OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS SCAS088A - DECEMBER 1989 - REVISED APRIL 1996 Independent Registers and Enables for A DW PACKAGE (TOP VIEW) and B Buses • Multiplexed Real-Time and Stored Data OEAB 28 CLKAB Inverting Data Paths 27 🛛 SAB A1 2 Flow-Through Architecture Optimizes PCB A2 3 26 🛛 B1 Ш Layout A3 25 BB2 П 4 A4 Г 5 24 B3 Center-Pin V_{CC} and GND Configurations 23 🛛 B4 GND Г 6 Minimize High-Speed Switching Noise GND П 7 22 VCC ● EPIC[™] (Enhanced-Performance Implanted 21 🛛 V_{CC} GND Π 8 CMOS) 1-µm Process GND 9 20 B5 • 500-mA Typical Latch-Up Immunity at A5 Г 10 19 B6 125°C Г 18 B7 A6 11 П в8 A7 12 17 description A8 13 16 CLKBA **OEBA** 15 SBA 14

The 74AC11652 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal

storage registers. Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. The select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 74AC11652.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set remains at its last state.

The 74AC11652 is characterized for operation from -40° C to 85° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

74AC11652

74AC11652 OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS

SCAS088A - DECEMBER 1989 - REVISED APRIL 1996

15

SBA

Х

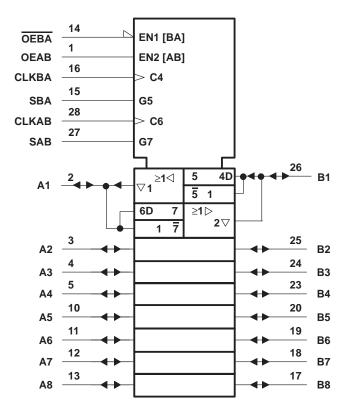
15

SBA

Н

74AC11652 OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS

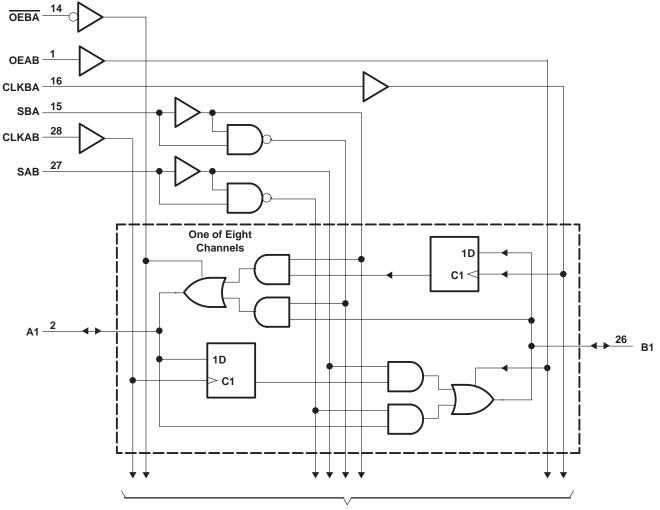
SCAS088A - DECEMBER 1989 - REVISED APRIL 1996


	FUNCTION TABLE									
		INPU	TS			DATA	a I/o†	OPERATION OR FUNCTION		
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION		
L	Н	L	L	Х	Х	Input	Input	Isolation		
L	Н	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data		
X	Н	\uparrow	L	Х	Х	Input	Unspecified [‡]	Store A, hold B		
н	Н	\uparrow	\uparrow	х‡	Х	Input	Output	Store A in both registers		
L	Х	L	\uparrow	Х	Х	Unspecified [‡]	Input	Hold A, store B		
L	L	\uparrow	\uparrow	Х	X‡	Output	Input	Store B in both registers		
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus		
L	L	Х	L	Х	н	Output	Input	Stored B data to A bus		
н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus		
н	Н	L	Х	н	Х	Input	Output	Stored A data to B bus		
н	L	L	L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus		

[†] The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or OEBA inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.

[‡] Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.


logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Note 1)	
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)	1.7 W
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3	5	5.5	V	
		$V_{CC} = 3 V$	2.1				
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			V	
			V _{CC} = 5.5 V	3.85			
		V _{CC} = 3 V			0.9		
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V	
		V _{CC} = 5.5 V			1.65		
VI	Input voltage	oltage			VCC	V	
VO	Output voltage		0		VCC	V	
		V _{CC} = 3 V			-4		
ЮН	High-level output current	V _{CC} = 4.5 V			-24	mA	
		V _{CC} = 5.5 V			-24		
		V _{CC} = 3 V			12		
IOL	Low-level output current	V _{CC} = 4.5 V			24	mA	
		V _{CC} = 5.5 V			24		
A # / A	long at transition rise or fell rate	Control pins	0		5	20/1/	
Δt/Δv	Input transition rise or fall rate	Data	0		10	ns/V	
TA	Operating free-air temperature		-40		85	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST CONDITIONS	Vee	T _A = 25°C			MINI	MAY	UNIT
FA	RAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	IVIIIN	MAX 0.1 0.1 0.44 0.44 1.65 ±1 ±5 80	UNIT
			3 V	2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4			
			5.5 V	5.4			5.4	$ \begin{array}{c} 2.9\\ 4.4\\ 5.4\\ .48\\ 3.8\\ 4.8\\ .85\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.44\\ 0.44\\ 0.44\\ 1.65\\ \pm 1\\ \pm 5\\ \end{array} $	
V_{OH} $I_{OH} = -4 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -75 \text{ mA}^{\dagger}$ $I_{OL} = 50 \text{ µA}$ $I_{OL} = 50 \text{ µA}$ $I_{OL} = 12 \text{ mA}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 75 \text{ mA}^{\dagger}$ $I_{OL} = 75 $	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V	
			4.5 V	3.94			3.8		
		I _{OH} = – 24 mA	5.5 V	4.94			4.8		
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
			3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1		
		5.5 V			0.1		0.1		
VOL		I _{OL} = 12 mA	3 V			0.36		0.44	V
		1_{0} = 24 mA	4.5 V			0.36		0.44	
			5.5 V			0.36		0.44	
		I _{OL} = 75 mA [†]	5.5 V					1.65	
l	Control inputs	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μA
loz‡	A or B ports	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5	μA
		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80	μA
	Control inputs	$V_{I} = V_{CC} \text{ or } GND$	5 V		4.5				pF
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$	5 V		12				pF

[†]Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

 \ddagger For I/O ports, the parameter I_{OZ} includes the input leakage current.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

		T _A = 25°C		MIN	MAX	UNIT
		MIN	MAX		IVIAA	UNIT
fclock	Clock frequency	0	65	0	65	MHz
tw	Pulse duration, CLK high or low	7.7		7.7		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	6		6		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

		T _A = 2	25°C	MIN	МАХ	UNIT
		MIN	MAX			UNIT
fclock	Clock frequency	0	105	0	105	MHz
tw	Pulse duration, CLK high or low	4.8		4.8		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	4.5		4.5		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	1		1		ns

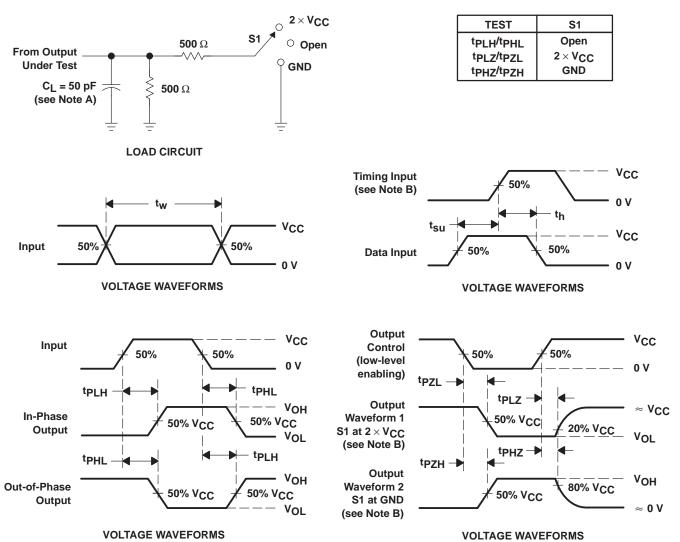
switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

	FROM	то	Т	₄ = 25°C	>	MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX		IVIAA	UNIT
f _{max}			65			65		MHz
^t PLH	A or B	B or A	2.9	8.5	11.1	2.9	12.9	ns
^t PHL	AUD	BOIA	3.9	10.3	12.9	3.9	14.2	115
^t PLH	CLKBA or CLKAB	A or B	4.3	11.2	14.3	4.3	16.2	ns
^t PHL	CERBA OF CERAB	AUB	5.3	13.1	16.2	5.3	17.8	115
^t PLH	SBA or SAB [†] (A or B high)	A or B	3.4	9.4	12	3.4	13.7	ns
^t PHL		AUB	4.7	11.5	14.3	4.7	15.6	115
^t PLH	SBA or SAB [†]	A or B	3.9	10.5	13.3	3.9	14.9	ns
^t PHL	(A or B low)	AUB	4.8	12.1	16.3	4.8	17.7	115
^t PZH	OEBA	А	4.3	11.1	14.5	4.3	16.5	ns
^t PZL	OEBA	~	5.2	14.4	19.8	5.2	22	115
^t PHZ	OEBA	A	3.7	6.4	8.1	3.7	8.5	ns
^t PLZ	OEBA	A	3.5	6	7.8	3.5	8.2	115
^t PZH	OEAB	В	4.7	11.6	15	4.7	16.9	
^t PZL	OEAB	D	5.6	14.8	19.9	5.6	21.9	ns
^t PHZ	OEAB	В	4	6.6	8.2	4	8.6	ns
^t PLZ		В	3.5	6.1	7.7	3.5	8	115

[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	ТО	Т	ຊ = 25 °C	>	MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MIN TYP MAX	IVIAA	UNIT		
fmax			105			105		MHz
^t PLH	A or B	B or A	2.4	5.2	7.6	2.4	8.6	ns
^t PHL	A or B	BUR	3.1	6	8.7	3.1	9.6	115
^t PLH	CLKBA or CLKAB	A or B	3.6	6.7	9.5	3.6	10.7	ns
^t PHL		AUB	4.4	7.8	10.8	4.4	12	115
^t PLH	SBA or SAB (A or B high)	A or B	2.9	5.6	8.1	2.9	9.1	ns
^t PHL		AUB	3.8	6.9	9.6	3.8	10.7	115
^t PLH	SBA or SAB (A or B low)	A or B	3.3	6.2	8.8	3.3	9.9	ns
^t PHL		AUB	4	7.1	9.9	4	10.9	115
^t PZH	OEBA	A	3.3	6.6	9.6	3.3	10.9	ns
^t PZL	UEDA	~	4.2	7.4	10.9	4.2	12.2	115
^t PHZ		А	3.6	5.5	7.2	3.6	7.6	ns
^t PLZ	OEBA	~	3.3	5	6.7	3.3	7.1	115
^t PZH	OEAB	В	4.1	7.2	10.1	4.1	11.3	ns
^t PZL	UEAD	В	4.6	7.9	11.1	4.6	12.3	115
^t PHZ	OEAB	В	3.9	5.6	7.3	3.9	7.6	ns
^t PLZ	ULAD		3.4	5.2	6.8	3.4	7.2	115


operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd}		Outputs enabled	C _I = 50 pF. f = 1 MHz	60	~F
	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$	14	pF

74AC11652 OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS

SCAS088A - DECEMBER 1989 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated