# 3EZ11 THRU 3EZ200

## GLASS PASSIVATED JUNCTION SILICON ZENER DIODE VOLTAGE - 11 TO 200 Volts Power - 3.0 Watts

#### **FEATURES**

- Low profile package
- Built-in strain relief
- Glass passivated junction
- Low inductance
- Excellent clamping capability
- Typical I<sub>D</sub> less than 1 A above 11V
- High temperature soldering :
- 260 /10 seconds at terminals
- Plastic package has Underwriters Laboratory

Flammability Classification 94V-O

## MECHANICAL DATA

Case: JEDEC DO-15, Molded plastic over passivated junction

Terminals: Solder plated, solderable per MIL-STD-750,

method 2026

Polarity: Color band denotes positive end (cathode)

Standard Packaging: 52mm tape

Weight: 0.015 ounce, 0.04 gram



Dimensions in inches and (millimeters)

## MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 ambient temperature unless otherwise specified.

|                                                                              | SYMBOL           | VALUE       | UNITS |
|------------------------------------------------------------------------------|------------------|-------------|-------|
| Peak Pulse Power Dissipation (Note A)                                        | PD               | 3           | Watts |
| Derate above 75                                                              |                  | 24          | mW/   |
| Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated | I <sub>FSM</sub> | 15          | Amps  |
| load(JEDEC Method) (Note B)                                                  |                  |             | -     |
| Operating Junction and Storage Temperature Range                             | TJ,TSTG          | -55 to +150 |       |

#### NOTES:

A. Mounted on 5.0mm<sup>2</sup>(.013mm thick) land areas.

B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses

per minute maximum.

#### 3EZ11 THRU 3EZ200

ELECTRICAL CHARACTERISTICS (T<sub>A</sub>=25 unless otherwise noted) V<sub>F</sub>=1.2 V max , I<sub>F</sub>=500 mA for all types

| Type No.  | Nominal Zener                | Test            | Maximum Zener Impedance (Note 3.) |                   | Maximum Zener   | Surge Current   |                |                 |                       |
|-----------|------------------------------|-----------------|-----------------------------------|-------------------|-----------------|-----------------|----------------|-----------------|-----------------------|
| (Note 1.) | Voltage Vz @ I <sub>ZT</sub> | current         |                                   |                   |                 | Leakage Current |                | Current         | @ T <sub>A</sub> = 25 |
|           | volts                        | I <sub>ZT</sub> | $Z_{ZT} @ I_{ZT}$                 | $Z_{Zk} @ I_{ZK}$ | I <sub>ZK</sub> | I <sub>R</sub>  | V <sub>R</sub> | I <sub>ZM</sub> | ir - mA               |
|           | (Note 2.)                    | mA              | Ohms                              | Ohms              | mA              | A Max           |                | Madc            | (Note 4.)             |
| 3EZ11     | 11                           | 68              | 4                                 | 700               | 0.25            | 1               | 8.4            | 225             | 1.82                  |
| 3EZ12     | 12                           | 63              | 4.5                               | 700               | 0.25            | 1               | 9.1            | 246             | 1.66                  |
| 3EZ13     | 13                           | 58              | 4.5                               | 700               | 0.25            | 0.5             | 9.9            | 208             | 1.54                  |
| 3EZ14     | 14                           | 53              | 5                                 | 700               | 0.25            | 0.5             | 10.6           | 193             | 1.43                  |
| 3EZ15     | 15                           | 50              | 5.5                               | 700               | 0.25            | 0.5             | 11.4           | 180             | 1.33                  |
| 3EZ16     | 16                           | 47              | 5.5                               | 700               | 0.25            | 0.5             | 12.2           | 169             | 1.25                  |
| 3EZ17     | 17                           | 44              | 6                                 | 750               | 0.25            | 0.5             | 13             | 150             | 1.18                  |
| 3EZ18     | 18                           | 42              | 6                                 | 750               | 0.25            | 0.5             | 13.7           | 159             | 1.11                  |
| 3EZ19     | 19                           | 40              | 7                                 | 750               | 0.25            | 0.5             | 14.4           | 142             | 1.05                  |
| 3EZ20     | 20                           | 37              | 7                                 | 750               | 0.25            | 0.5             | 15.2           | 135             | 1                     |
| 3EZ22     | 22                           | 34              | 8                                 | 750               | 0.25            | 0.5             | 16.7           | 123             | 0.91                  |
| 3EZ24     | 24                           | 31              | 9                                 | 750               | 0.25            | 0.5             | 18.2           | 112             | 0.83                  |
| 3EZ27     | 27                           | 28              | 10                                | 750               | 0.25            | 0.5             | 20.6           | 100             | 0.74                  |
| 3EZ28     | 28                           | 27              | 12                                | 750               | 0.25            | 0.5             | 21             | 96              | 0.71                  |
| 3EZ30     | 30                           | 25              | 16                                | 1000              | 0.25            | 0.5             | 22.5           | 90              | 0.67                  |
| 3EZ33     | 33                           | 23              | 20                                | 1000              | 0.25            | 0.5             | 25.1           | 82              | 0.61                  |
| 3EZ36     | 36                           | 21              | 22                                | 1000              | 0.25            | 0.5             | 27.4           | 75              | 0.56                  |
| 3EZ39     | 39                           | 19              | 28                                | 1000              | 0.25            | 0.5             | 29.7           | 69              | 0.51                  |
| 3EZ43     | 43                           | 17              | 33                                | 1500              | 0.25            | 0.5             | 32.7           | 63              | 0.45                  |
| 3EZ47     | 47                           | 16              | 38                                | 1500              | 0.25            | 0.5             | 35.6           | 57              | 0.42                  |
| 3EZ51     | 51                           | 15              | 45                                | 1500              | 0.25            | 0.5             | 38.8           | 53              | 0.39                  |
| 3EZ56     | 56                           | 13              | 50                                | 2000              | 0.25            | 0.5             | 42.6           | 48              | 0.36                  |
| 3EZ62     | 62                           | 12              | 55                                | 2000              | 0.25            | 0.5             | 47.1           | 44              | 0.32                  |
| 3EZ68     | 68                           | 11              | 70                                | 2000              | 0.25            | 0.5             | 51.7           | 40              | 0.29                  |
| 3EZ75     | 75                           | 10              | 85                                | 2000              | 0.25            | 0.5             | 56             | 36              | 0.27                  |
| 3EZ82     | 82                           | 9.1             | 95                                | 3000              | 0.25            | 0.5             | 62.2           | 33              | 0.24                  |
| 3EZ91     | 91                           | 8.2             | 115                               | 3000              | 0.25            | 0.5             | 69.2           | 30              | 0.22                  |
| 3EZ100    | 100                          | 7.5             | 160                               | 3000              | 0.25            | 0.5             | 76             | 27              | 0.2                   |
| 3EZ110    | 110                          | 6.8             | 225                               | 4000              | 0.25            | 0.5             | 83.6           | 25              | 0.18                  |
| 3EZ120    | 120                          | 6.3             | 300                               | 4500              | 0.25            | 0.5             | 91.2           | 22              | 0.16                  |
| 3EZ130    | 130                          | 5.8             | 375                               | 5000              | 0.25            | 0.5             | 98.8           | 21              | 0.15                  |
| 3EZ140    | 140                          | 5.3             | 475                               | 5000              | 0.25            | 0.5             | 106.4          | 19              | 0.14                  |
| 3EZ150    | 150                          | 5               | 550                               | 6000              | 0.25            | 0.5             | 114            | 18              | 0.13                  |
| 3EZ160    | 160                          | 4.7             | 625                               | 6500              | 0.25            | 0.5             | 121.6          | 17              | 0.12                  |
| 3EZ170    | 170                          | 4.4             | 650                               | 7000              | 0.25            | 0.5             | 130.4          | 16              | 0.12                  |
| 3EZ180    | 180                          | 4.2             | 700                               | 7000              | 0.25            | 0.5             | 136.8          | 15              | 0.11                  |
| 3EZ190    | 190                          | 4               | 800                               | 8000              | 0.25            | 0.5             | 144.8          | 14              | 0.1                   |
| 3EZ200    | 200                          | 3.7             | 875                               | 8000              | 0.25            | 0.5             | 152            | 13              | 0.1                   |

NOTES:

1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device.

2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms $\pm$ 10ms from the diode body, and an ambient temperature of 25 ( 8 , -2 ).

- 3.ZENER IMPEDANCE (Zz) DERIVATION The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current ( $I_{ZT}$  or  $I_{ZK}$ ) is superimposed on  $I_{ZT}$  or  $I_{ZK}$ .
- 4. SURGE CURRENT (Ir) NON-REPETITIVE The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, I<sub>ZT</sub>, per JEDEC standards, however, actual device capability is as described in Figure 3.

#### RATING AND CHARACTERISTICS CURVES

3EZ11 THRU 3EZ200





Fig. 3-MAXIMUM SURGE POWER

## APPLICATION NOTE:

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T<sub>L</sub>, should be determined from:

$$TL = L_A P_D + T_A$$

LA is the lead-to-ambient thermal resistance ( /W) and P<sub>D</sub> is the power dissipation. The value for LA will vary and depends on the device mounting method.

LA is generally 30-40 /W for the various chips and tie points in common use and for printed circuit board wiring.



Fig. 4-TYPICAL REVERSE LEAKAGE

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of  $T_L$ , the junction temperature may be determined by:

#### $T_{ij} = T_{ij} + T_{ijj}$

T<sub>.</sub> is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power.

$$T_{JL} = L_A P_D$$

For worst-case design, using expected limits of Iz, limits of  $P_D$  and the extremes of  $T_J$  (  $T_{JL}$  ) may be estimated. Changes in voltage, Vz, can then be found from:

$$V = V_Z T_J$$

 $_{\rm VZ}$  , the zener voltage temperature coefficient, is found from Figures 5 and 6.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current

## RATING AND CHARACTERISTICS CURVES 3EZ11 THRU 3EZ200

excursions as low as possible.

Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.

## **TEMPERATURE COEFFICIENT REAGES**





Fig. 8-  $V_Z$  = 12 THRU 82 VOLTS



Fig. 9-V<sub>Z</sub> = 100 THRU 200 VOLTS



Fig. 10-TYPICAL THERMAL RESISTANCE