CMOS LSI

LC82101

SANYO

Preliminary

Overview

The LC82101 converts an analog image signal from a CCD or contact sensor to high-quality binary image data. The LC82101 uses an internal 8-bit A/D converter for A/D conversion, and in addition to the orthodox dithering technique, also supports an error diffusion technique that allows an even higher quality image to be acquired. These techniques apply to the whole range of processing supported by the LC82101, including full-pixel distortion correction, gamma conversion for arbitrary gamma curves, image compression processing, two-dimensional filtering, halftone processing, and image separation processing to separate documents into text, photograph, and halftone regions. Thus this LSI implements the image processing required by FAX, copier, and OCR systems.

Features

• Number of pixels processed

2048 pixels/line (64 KB memory, white correction only) 4096 pixels/line (256 KB memory, both white and black correction)

8192 pixels/line (256 KB memory, white correction only)

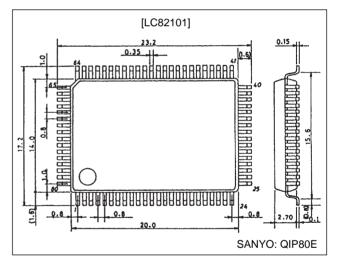
- Processing speed 500 ns/pixel maximum (The processing time for 1 pixel is 16/SYSCLK.)
- Supports medium speed products with a single external memory chip

100 ns access time memory allows 800 ns/pixel processing, and 60 ns access time memory allows 500 ns/pixel processing.

- AGC (The A/D converter high-level reference voltage is varied from 1.2 to 4.2 V in 0.2 V steps.)
- Built-in 8-bit A/D converter (includes a sensor signal delay adjustment function)
- Sensor drive circuit (supports CCD and all CIS types)
- Digital clamp (single-point clamp, even/odd clamp)
- Distortion correction (white correction, black correction, full-pixel correction)
- Gamma correction (supports user-defined curves)
- Image area separation (text, photographs, halftone)
- Simple binary-conversion processing (fixed threshold level, density-adaptive threshold level)

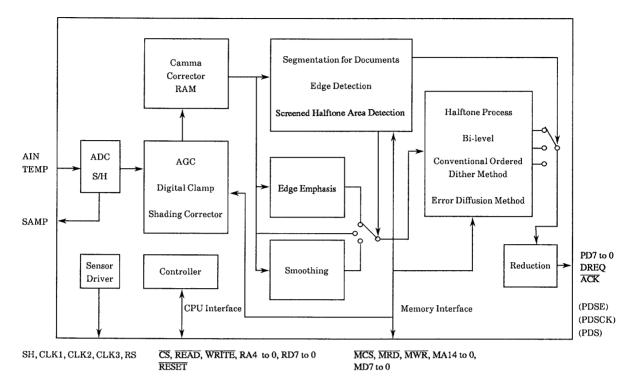
Image Processing Circuit for FAX, Copier, and OCR Products

• Halftone processing Structural dithering (64 levels), settable dithering threshold level


Error diffusion technique (64 levels)

- Image reduction (thinning, fine black line retaining, fine white line retaining)
- Single-voltage 5 V supply and low power due to CMOS process fabrication

Package Dimensions


unit: mm

3174-QFP80E

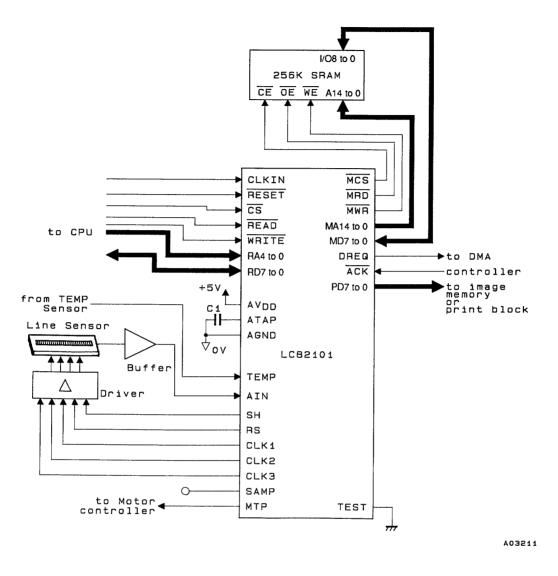
SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Block Diagram

Pin Functions

Type: I: Input pin, O: Output pin, B: Bidirectional pin, P: Power supply pin, NC: No connection

Pin No.	Symbol	I/O	Function
1	DREQ	0	DMA data request signal output
2	ACK	1	DMA acknowledge signal input
3	PD0	0	
4	PD1	0	Binary image data parallel data bus
5	PD2	0	The data order is set by the MSBF register.
6	PD3	0	
7	PD4	0	
8	PD5/SDE	0	Pin 8 can be switched to function as the serial data output valid period signal.
9	PD6/SDCK	0	Pin 9 can be switched to function as the serial data transfer clock.
10	PD7/SD	0	Pin 10 can be switched to function as the serial data output.
11	MD0	В	External memory data bus
12	DV _{DD}	Р	Digital system power supply
13	DGND	Р	Digital system ground
14	MD1	В	
15	MD2	В	
16	MD3	В	
17	MD4	В	External memory data bus MD7 is the MSB and MD0 is the LSB.
18	MD5	В	
19	MD6	В	
20	MD7	В	
21	DGND	Р	Digital system ground
22	MA0	0	
23	MA1	0	
24	MA2	0	
25	MA3	0	
26	MA4	0	External memory address MA14 is the MSB and MA0 is the LSB.
27	MA5	0	
28	MA6	0	
29	MA7	0	
30	MA8	0	


LC82101

Continued from preceding page.

Type: I: Input pin, O: Output pin, B: Bidirectional pin, P: Power supply pin, NC: No connection

Pin No.	Symbol	I/O	Function			
31	DV _{DD}	P	Digital system power supply			
32	DGND	P	Digital system ground			
33	MA9	0				
34	MA10	0				
35	MA11	0	External memory address bus			
36	MA12	0	MA14 is the MSB and MA0 is the LSB.			
37	MA13	0				
38	MA14	0				
39	MCS	0	External memory CS signal			
40	MRD	0	External memory READ signal			
41	MWR	0	External memory WRITE signal			
41	DGND	P	Digital system ground			
43	MTP	0	Motor drive timing signal output			
43	SH	0				
44	RS	0				
		0				
46	CLK1	0	Sensor drive signal outputs			
47	CLK2	_				
48	CLK3	0	Ormalian de la mariter			
49	SAMP	0	Sampling clock monitor			
50	CLKIN		System clock input			
51	DV _{DD}	P	Digital system power supply			
52	DGND	P	Digital system ground			
53	NC	NC				
54	NC	NC				
55	NC	NC				
56	TEST		Test input (Connect to ground in normal use.)			
57	AGND	P	Analog system ground			
58	ATAP	0	Analog mid-level connection			
59	AIN		Sensor signal input			
60	TEMP		Temperature signal input			
61	AV _{DD}	P	Analog system power supply			
62	RD0	В				
63	RD1	В				
64	RD2	В				
65	RD3	В	CPU interface data bus			
66	RD4	В	RD7 is the MSB and RD0 is the LSB.			
67	RD5	В				
68	RD6	В				
69	RD7	В				
70	RA0	I	CPU interface address bus			
71	RA1	I	RA4 is the MSB and RA0 is the LSB.			
72	RA2	I				
73	DV _{DD}	Р	Digital system power supply			
74	DGND	Р	Digital system ground			
75	RA3	I	CPU interface address bus			
76	RA4	I				
77	CS	I	CPU interface CS signal			
78	READ	I	CPU interface READ signal			
79	WRITE	I	CPU interface WRITE signal			
80	RESET	I	System reset			

Sample Application Circuit

- 1. C1: Use a 0.01 µF laminated ceramic capacitor.
- 2. Set up the polarity of the image signal from the sensor so that white data is represented by the highest potential and black data by the lowest potential. A level conversion circuit can allow the whole dynamic range of the built-in A/D converter to be used effectively if the maximum output level of the peaks in the image signal from the sensor does not reach 4.2 V.
- 3. When a 64 K SRAM is used as the distortion correction memory, leave MA11 and MA12 unused and connect MA13 and MA14 to the memory A11 and A12 lines.
- 4. Although AGND and DGND are completely isolated internally in this LSI, AV_{DD} and DV_{DD} are connected through the substrate. Therefore, the power supply system must be designed so that no potential difference between AV_{DD} and DV_{DD} can occur. Also, when power is applied or removed, the time lag between the power supplies must be under 3 ms.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, GND = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +7.0	V
I/O voltages	V _I , V _O		–0.3 to V _{DD} + 0.3	V
Allowable power dissipation	Pd max	Ta ≤ 70°C	450	mW
Operating temperature	Topr		-30 to +70	°C
Storage temperature	Tstg		-55 to +125	°C
Coldering conditions		Hand soldering: 3 seconds	350	°C
Soldering conditions		Reflow soldering: 10 seconds	235	°C

Allowable Operating Conditions at Ta = -30 to $+70^{\circ}C$, GND = 0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}		4.5		5.5	V
Input voltage	V _{IN}		0		V _{DD}	V

DC Characteristics at Ta = -30 to $+70^{\circ}$ C, GND = 0 V, V_{DD} = 4.5 to 5.5 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level voltage	VIH		2.2			V
Input low-level voltage	VIL				0.8	V
Input leakage current	١L	$V_{IN} = V_{DD}, V_{SS}$	-25		+25	μA
Output high-level voltage	V _{OH}	I _{OH} = 3 mA	2.4			V
Output low-level voltage	V _{OL}	I _{OL} = 3 mA			0.4	V
Output leakage current	١L	When in the high-impedance state	-100		+100	μA
Current drain	I _{DD}	V _{DD} = 5.0 V, SYSCLK = 32 MHz		40	60	mA

Analog Characteristics

The minimum signal level in analog input signals must be matched to AGND, and the maximum signal level must not exceed the maximum AGC potential.

Parameter	Symbol	Conditions	min	typ	max	Unit			
[When AGND = 0 V]									
Maximum potential			0.82	0.84	0.86	AV _{DD} V			
Minimum potential			0.22	0.24	0.26	AV _{DD} V			
[When AV _{DD} = 5.0 V, AGND = 0 V, and the AGC is at the maximum potential]									
Resolution				8		bit			
Linearity error					±1	LSB			
Differential linearity error					±1	LSB			

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.