
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- Wide analog input voltage range: \pm 5 V.
- Low "ON" resistance: 80Ω (typ.) at V_{CC} - V_{EE} = 4.5 V 70Ω (typ.) at V_{CC} - V_{EE} = 6.0 V 60Ω (typ.) at V_{CC} - V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the "4052" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

The 74HC/HCT4052 are dual 4-channel analog multiplexers/demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (nY₀ to nY₃) and a common input/output (nZ). The common channel select logics include two digital select inputs (S₀ and S₁) and an active LOW enable input (\overline{E}).

With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S₀ and S₁. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S₀ and S₁.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₀ and S₁, and \overline{E}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY₀ to nY₃, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT	
STWIDUL	FARAMETER	CONDITIONS	НС	нст	
t _{PZH} / t _{PZL}	turn "ON" time \overline{E} or S _n to V _{OS}	$C_{L} = 15 \text{ pF}$; $R_{L} = 1 \text{ k}\Omega$;	28	18	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E} or S _n to V _{OS}	$V_{CC} = 5 V$	21	13	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	57	57	pF
	max. switch capacitance				
CS	independent (Y)		5	5	pF
	common (Z)		12	12	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o)\} \text{ where:}$

 f_i = input frequency in MHz

 f_o = output frequency in MHz

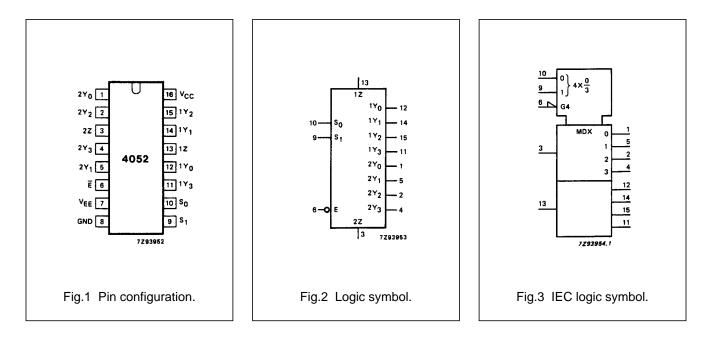
 $\Sigma \{(C_L + C_S) \times V_{CC}^2 \times f_o)\} = sum of outputs$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


74HC/HCT4052

ORDERING INFORMATION

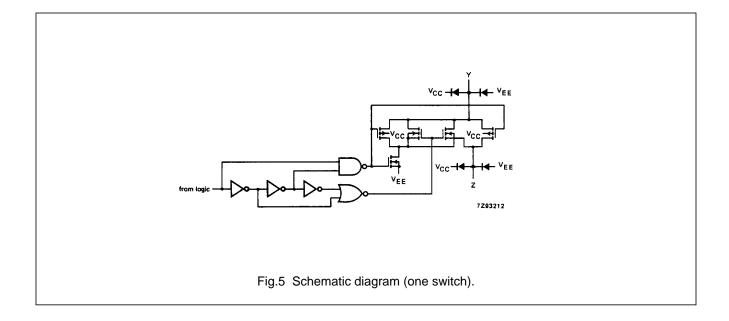
See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 5, 2, 4	2Y ₀ to 2Y ₃	independent inputs/outputs
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
10, 9	S ₀ , S ₁	select inputs
12, 14, 15, 11	$1Y_0$ to $1Y_3$	independent inputs/outputs
13, 3	1Z, 2Z	common inputs/outputs
16	V _{CC}	positive supply voltage

<figure><figure>

APPLICATIONS


- Analog multiplexing and demultiplexing
- Digital multiplexing and
- demultiplexing
- Signal gating

FUNCTION TABLE

	INPUTS	CHANNEL	
Ē	S ₁	S ₀	ON
L	L	L	nY ₀ – nZ
L	L	Н	nY ₁ – nZ
L	Н	L	nY ₂ – nZ
L	Н	Н	$nY_3 - nZ$
Н	Х	Х	none

Notes

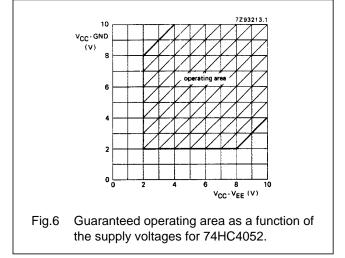
- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

74HC/HCT4052

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to $V_{EE} = GND$ (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for V _I $<$ –0.5 V or V _I $>$ V _{CC} +0.5 V
±I _{SK}	DC switch diode current		20	mA	for V_S < –0.5 V or V_S $$ > V_{CC} +0.5 V
±ls	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}}$ +0.5 V
±IEE	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: –40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
P _S	power dissipation per switch		100	mW	


Note to ratings

1. To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC		-	74HC	Г	UNIT	CONDITIONS
STMBOL	FARAMETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage V _{CC} –GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Fig.6 and Fig.7
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Fig.6 and Fig.7
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	V_{EE}		V _{CC}	V_{EE}		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 V V_{CC} = 4.5 V V_{CC} = 6.0 V V_{CC} = 10.0 V$

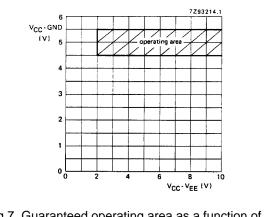


Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4052.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb} ((°C)					TEST CONDITIONS				
					74HC/	нст]						
SYMBOL	PARAMETER	+25			–40 to +85		-40 to +125			V _{CC} (V)	V _{EE} (V)	Ι _S (μΑ)	Vis	VI	
		min.	typ.	max.	min.	max.	min.	max.]						
R _{ON}	ON resistance (peak)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IH} or V _{IL}	
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}	
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}	
ΔR _{ON}	maximum ∆ON resistance between any two channels		- 9 8 6						Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _H or V _{IL}	

Notes to the characteristics

- At supply voltages (V_{CC}- V_{EE}) approaching 2.0 V the Analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages
- 2. For test circuit measuring $R_{\text{ON}}\,\text{see}\,\text{Fig.8}$

74HC/HCT4052

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb}	(°C)			TEST CONDITIONS				
					74H	IC							
SYMBOL	PARAMETER	+25			–40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±lı	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μA	6.0 10.0	0 0	V _{CC} or GND	
±ls	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±ls	analog switch OFF-state current all channels			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160 320.0	μA	6.0 10.0	0 0	V _{CC} or GND	$V_{is} = V_{EE}$ or V _{CC} ; $V_{OS} = V_{CC}$ or V _{EE}

74HC/HCT4052

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} ((°C)				TEST CONDITIONS			
					74H	С							
SYMBOL	PARAMETER		+25 -		-40 to +85 -		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation		14	60		75		90	ns	2.0	0	R _L = ∞; C _L = 50 pF	
	delay		5	12		15		18		4.5	0	(see Fig.18)	
	V _{is} to V _{os}		4	10		13		15		6.0	0		
			4	8		10		12		4.5	-4.5		
t _{PZH} / t _{PZL}	turn "ON" time		105	325		405		490	ns	2.0	0	R _L = ∞; C _L = 50 pF	
	Ē to V _{os}		38	65		81		98		4.5	0	see Fig.19, 20 and 21	
	S _n to V _{os}		30	55		69		83		6.0	0	-	
			26	46		58		69		4.5	-4.5		
t _{PHZ} / t _{PLZ}	turn "OFF" time		74	250		315		375	ns	2.0	0	$R_L = 1 k\Omega;$	
	E to V _{os}		27	50		63		75		4.5	0	C _L = 50 pF	
	S _n to V _{os}		22	43		54		64		6.0	0	see Fig.19, 20 and 21	
			22	38		48		57		4.5	-4.5		

74HC/HCT4052

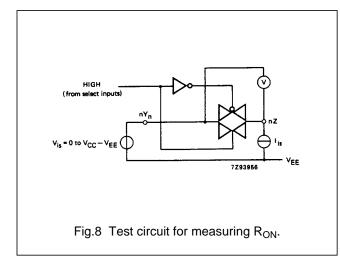
DC CHARACTERISTICS FOR 74HCT

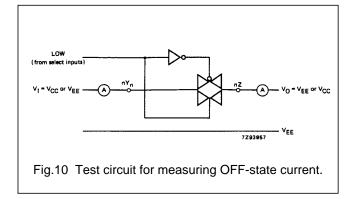
Voltages are referenced to GND (ground = 0)

					T _{amb}	(°C)					TES		DITIONS
	DADAMETED				74⊦	ЮТ							OTHER
SYMBOL	PARAMETER		+25		-40	–40 to +85		o +125	UNIT	V _{CC} (V)	V _{EE} (V)	VI	UTHER
		min.	typ.	max.	min.	max.	min.	max.	1				
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±lı	input leakage current			0.1		1.0		1.0	μA	5.5	0	V _{CC} or GND	
±ls	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±ls	analog switch OFF-state current all channels			0.2		2.0		2.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S =$ $V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V _{CC} ; $V_{OS} = V_{CC}$ or V _{EE}
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
Sn	0.45
Ē	0.45


74HC/HCT4052

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				I	T _{amb} (°C)				-	TEST CONDITIONS			
					74HC	т		v _{cc}						
SYMBOL PARAMETER		+25			-40 to +85		-40 to +125		0 +125		V _{EE} (V)	OTHER		
		min.	typ.	max.	min.	max.	min.	max.						
t _{PHL} / t _{PLH}	propagation delay V_{is} to V_{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_{L} = \infty;$ $C_{L} = 50 \text{ pF}$ (see Fig.18)		
t _{PZH} / t _{PZL}	turn "ON" time Ē to V _{os} S _n to V _{os}		41 28	70 48		88 60		105 72	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 \text{ pF see}$ (Fig.19, 20 and 21)		
t _{PHZ} / t _{PLZ}	turn "OFF" time Ē to V _{os} S _n to V _{os}		26 21	50 38		63 48		75 57	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (Fig.19, 20 and 21)		

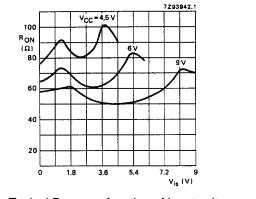
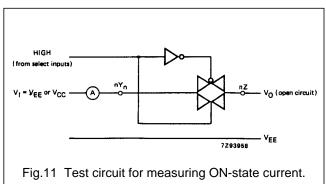



Fig.9 Typical R_{ON} as a function of input voltage V_{is} for $V_{is} = 0$ to $V_{CC} - V_{EE}$.

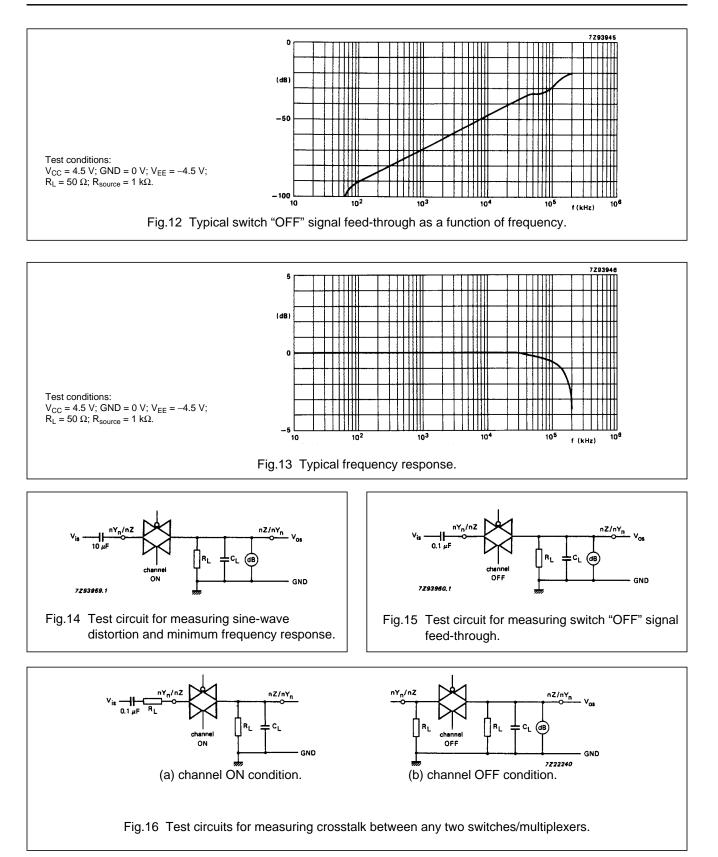
74HC/HCT4052

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

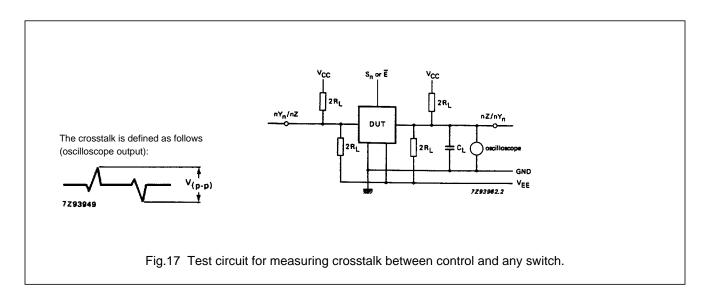
Recommended conditions and typical values

 $GND = 0 V; T_{amb} = 25 °C$

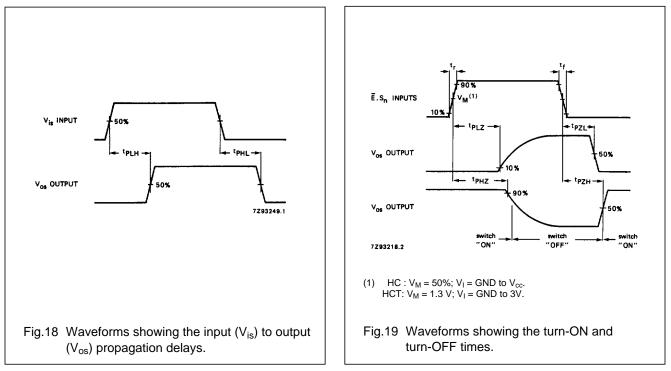
SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$\label{eq:RL} \begin{array}{l} R_{L} = 10 \; k\Omega; \; C_{L} = 50 \; pF \\ (\text{see Fig.14}) \end{array}$
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$\label{eq:RL} \begin{array}{l} R_{L} = 600 \; \Omega; \; C_{L} = 50 \; pF; \\ f = 1 \; MHz \; see \\ (Fig.12 \; and \; Fig.15) \end{array}$
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$ \begin{array}{l} R_L = 600 \ \Omega; \ C_L = 50 \ p\text{F}; \\ f = 1 \ M\text{Hz} \ (\overline{E} \ or \ S_n, \\ \text{square-wave between } V_{CC} \\ \text{and GND, } t_r = t_f = 6 \ n\text{s}) \\ (\text{see Fig.17}) \end{array} $
f _{max}	minimum frequency response (–3dB)	170 180	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 50 pF$ see (Fig.13 and Fig.14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				


Notes to AC characteristics

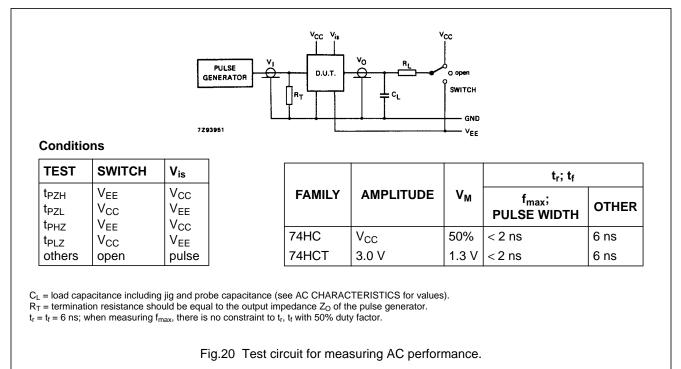
- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

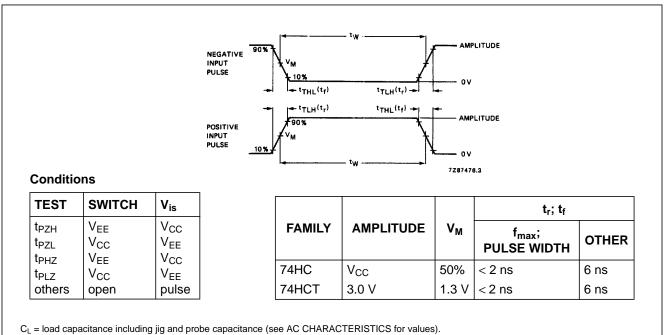

General notes

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input


 V_{os} is the output voltage at an $nY_n \mbox{ or } nZ$ terminal, whichever is assigned as an output

74HC/HCT4052




AC WAVEFORMS

74HC/HCT4052

TEST CIRCUIT AND WAVEFORMS

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z₀ of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

Fig.21 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".