8-Bit Addressable Latch

The MC74AC259/74ACT259 is a high-speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW Common Clear for resetting all latches, as well as an active LOW Enable. It is functionally identical to the ALS259 8-bit addressable latch.

- Serial-to-Parallel Conversion
- Eight Bits of Storage with Output of Each Bit Available
- Random (Addressable) Data Entry
- Active High Demultiplexing or Decoding Capability
- Easily Expandable
- Common Clear

FUNCTIONAL DESCRIPTION

The MC74AC259/74ACT259 has four modes of operation as shown in the Mode Selection Table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The addressed latch will follow the data input with all nonaddressed latches remaining in their previous states in the memory mode. All latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the MC74AC/ACT259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The Mode Select Function Table summarizes the operations of the MC74AC/ACT259.

LOGIC SYMBOL

MC74AC259 MC74ACT259

MODE SELECT TABLE

$\overline{\mathbf{E}}$	$\overline{\text { MR }}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH 8-Channel Demultiplexer
H	L	Clear

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\
& \mathrm{L}=\text { LOW Voltage Level }
\end{aligned}
$$

MODE SELECT-FUNCTION TABLE

Operating Mode	Inputs						Outputs							
	$\overline{\mathrm{MR}}$	\bar{E}	D	A_{0}	A_{1}	A_{2}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q4	Q_{5}	Q6	Q7
Master Reset	L	H	X	X	X	X	L	L	L	L	L	L	L	L
Demultiplex (Active HIGH Decoder when D = H)		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \stackrel{\mathrm{~L}}{ } \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text { - } \end{aligned}$	L H L \bullet \bullet \bullet \bullet -	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text { - } \end{aligned}$	$\begin{gathered} Q=d \\ L \\ L \\ \bullet \\ \bullet \\ \bullet \\ \text { • } \end{gathered}$	$\begin{gathered} \mathrm{L} \\ Q=\mathrm{d} \\ \mathrm{~L} \\ \bullet \\ \bullet \\ \bullet \\ \text { • } \end{gathered}$	$\begin{gathered} L \\ L \\ Q=d \end{gathered}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \bullet \cdot \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \stackrel{\rightharpoonup}{C} \end{aligned}$		$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \bullet \\ \bullet \\ \bullet \\ Q=d \end{gathered}$
Store (Do Nothing)	H	H	X	X	X	X	90	q1	92	93	94	95	96	97
Addressable Latch	H H H \bullet \bullet \bullet \bullet H	L L L \bullet \bullet \bullet	d d d - - - d	L H L \bullet \bullet \bullet -	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text { • } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text { - } \end{aligned}$	$\begin{gathered} \mathrm{Q}=\mathrm{d} \\ \mathrm{q} 0 \\ \mathrm{q0} \\ \bullet \\ \bullet \\ \bullet \\ \text { • } \\ \mathrm{q} 0 \end{gathered}$	$\begin{gathered} \mathrm{q}_{1} \\ \mathrm{Q}=\mathrm{d} \\ \mathrm{q}_{1} \\ \bullet \\ \bullet \\ \bullet \\ \mathrm{q}_{1} \end{gathered}$	$\begin{gathered} \mathrm{q}_{2} \\ \text { q2 } \\ \mathrm{Q}=\mathrm{d} \\ \bullet \\ \bullet \\ \bullet \\ \mathrm{q}_{2} \end{gathered}$	$\begin{aligned} & \text { q3 } \\ & \text { 93 } \\ & \text { q3 } \\ & \bullet \\ & \cdot \\ & \cdot \\ & \text { - } \end{aligned}$	$\begin{gathered} \mathrm{q} 4 \\ \mathrm{q} 4 \\ \mathrm{q} 4 \\ \bullet \\ \bullet \\ \bullet \\ \mathrm{q} 4 \end{gathered}$	$\begin{aligned} & \text { 95 } \\ & \text { 95 } \\ & \text { 95 } \\ & \bullet \\ & \bullet \\ & \bullet \\ & \text { 95 } \end{aligned}$	96 96 96 \bullet \bullet \bullet 96	$\begin{gathered} q_{7} \\ q_{7} \\ q_{7} \\ \bullet \\ \bullet \\ \bullet \\ Q=d \end{gathered}$

[^0]
MC74AC259 MC74ACT259

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MC74AC259 MC74ACT259
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
l $_{\text {ln }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Sink/Source Current, per Pin	± 50	mA
I_{CC}	DC $\mathrm{V}_{\text {CC }}$ or GND Current per Output Pin	± 50	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	'AC	2.0	5.0	6.0	V
		'ACT	4.5	5.0	5.5	
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Ref. to GND)		0		V_{CC}	V
$\mathrm{t}_{\mathrm{r}} \mathrm{tf}_{\mathrm{f}}$	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	Vcc @ 3.0 V		150		ns / V
		V Cc @ 4.5 V		40		
		VCc @ 5.5 V		25		
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	Input Rise and Fall Time (Note 2) 'ACT Devices except Schmitt Inputs	Vcc @ 4.5 V		10		ns / V
		VCC @ 5.5 V		8.0		
T_{J}	Junction Temperature (PDIP)				140	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Ambient Temperature Range		-40	25	85	${ }^{\circ} \mathrm{C}$
${ }^{\text {IOH}}$	Output Current - High				-24	mA
lOL	Output Current - Low				24	mA

[^1]DC CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{gathered}$			74AC	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	${ }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$
V OL	Maximum Low Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{array}{ll} * \mathrm{~V}_{\mathrm{IN}}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & 12 \mathrm{~mA} \\ \mathrm{IOL} & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{array}$
IIN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IOLD	\dagger Minimum Dynamic Output Current	5.5			75	mA	VOLD $=1.65 \mathrm{~V}$ Max
IOHD		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
${ }^{\text {I CC }}$	Maximum Quiescent Supply Current	5.5		8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND

* All outputs loaded; thresholds on input associated with output under test.
\dagger Maximum test duration 2.0 ms , one output loaded at a time.
Note: I_{I} and $\mathrm{I} \mathrm{CC} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3)

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	74AC			74AC		Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max		
tPLH	Propagation Delay $D_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.5 \end{aligned}$	ns	3-5
tPHL	Propagation Delay $D_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	ns	3-5
tPLH	Propagation Delay E to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \\ & 12.5 \\ & \hline \end{aligned}$	ns	3-6
tPHL	Propagation Delay E to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	3-6
tPLH	Propagation Delay Address to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 15.5 \end{aligned}$	ns	3-6
tPHL	Propagation Delay Address to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.0 \end{aligned}$	ns	3-6
tPHL	Propagation Delay MR to Q	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	8.0 6.0	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns	3-7

* Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC OPERATING REQUIREMENTS

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ \text { (V) } \end{gathered}$			74AC	Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum			
t_{s}	Setup Time, HIGH or LOW D_{n} to E	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	ns	3-9
th	Hold Time, HIGH or LOW D_{n} to E	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	ns	3-9
t_{s}	Setup Time Address to E	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	ns	3-6
th	Hold Time Address to E	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	ns	3-6
t_{w}	Minimum Pulse Width MR	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns	3-6
t_{w}	Minimum Pulse Width E	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns	3-6

* Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

DC CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{gathered}$			74ACT	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\left\{\begin{array}{l} { }^{*} \mathrm{~V}_{\mathrm{IN}}= \\ \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{IOH} \\ \mathrm{OH} \\ -24 \mathrm{~mA} \\ -24 \mathrm{~mA} \end{array}\right.$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\left\{\begin{array}{l} { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{IOL} \\ \mathrm{OL} \\ 24 \mathrm{~mA} \end{array}\right.$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\Delta^{\text {I CCT }}$	Additional Max. ICC/Input	5.5	0.6		1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
IOLD	\dagger Minimum Dynamic Output Current	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
IOHD		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

[^2]
MC74AC259 MC74ACT259

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3)

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathbf{C C}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	74ACT			$\begin{gathered} \hline 74 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						
			Min	Typ	Max	Min	Max		
tPLH	Propagation Delay $D_{n} \text { to } Q_{n}$	5.0	2.0	6.5	11.0	1.5	12.5	ns	3-5
tPHL	Propagation Delay D_{n} or Q_{n}	5.0	2.0	7.0	10.5	1.5	12.0	ns	3-5
tPLH	Propagation Delay E to Q_{n}	5.0	2.0	10.5	14.0	1.5	16.5	ns	3-6
tPHL	Propagation Delay E or Q_{n}	5.0	2.0	9.0	12.0	1.5	14.0	ns	3-6
tPLH	Propagation Delay Address to Q_{n}	5.0	2.0	8.0	11.5	1.5	13.5	ns	3-6
tPHL	Propagation Delay Address to Q_{n}	5.0	2.0	6.0	10.0	1.5	12.0	ns	3-6
tPHL	Propagation Delay MR to Q	5.0	2.0		10.0	1.5	11.0	ns	3-7

* Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC OPERATING REQUIREMENTS

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathbf{C C}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$			74ACT	Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup_Ime, HIGH or LOW D_{n} to E	5.0		3.0	4.0	ns	3-9
th	Hold Time, HIGH or LOW D_{n} to E	5.0		2.5	2.5	ns	3-9
t_{s}	Setup Time Address to E	5.0		4.5	6.5	ns	3-6
th	Hold Time Address to E	5.0		2.5	2.5	ns	3-6
${ }^{\text {w }}$ w	Minimum Pulse Width MR	5.0		7.0	7.5	ns	3-6
t_{w}	Minimum Pulse Width E	5.0		7.0	7.5	ns	3-6

* Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	50.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

MC74AC259 MC74ACT259

OUTLINE DIMENSIONS

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\boldsymbol{4}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 $d=$ HIGH or LOW Data one setup time prior to the LOW-to-HIGH Enable transition
 $\mathrm{q}=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

[^1]: 1. $V_{\text {in }}$ from 30% to $70 \% V_{\mathrm{CC}}$; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 2. $\mathrm{V}_{\text {in }}$ from 0.8 V to 2.0 V ; see individual Data Sheets for devices that differ from the typical input rise and fall times.
[^2]: * All outputs loaded; thresholds on input associated with output under test.
 \dagger Maximum test duration 2.0 ms , one output loaded at a time.

