# **General Purpose Transistor NPN Silicon** 2N4264 COLLECTOR 3 2 BASE EMITTER MAXIMUM RATINGS CASE 29-04, STYLE 1 TO-92 (TO-226AA)

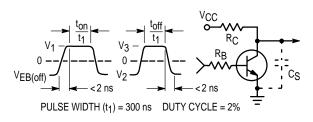
| Rating                                                                | Symbol               | Value       | Unit           |  |  |
|-----------------------------------------------------------------------|----------------------|-------------|----------------|--|--|
| Collector-Emitter Voltage                                             | VCEO                 | 15          | Vdc            |  |  |
| Collector-Base Voltage                                                | V <sub>CBO</sub>     | 30          | Vdc            |  |  |
| Emitter-Base Voltage                                                  | V <sub>EBO</sub>     | 6.0         | Vdc            |  |  |
| Collector Current — Continuous                                        | IC                   | 200         | mAdc           |  |  |
| Total Device Dissipation @ T <sub>A</sub> = 25°C<br>Derate above 25°C | PD                   | 350<br>2.8  | mW<br>mW/°C    |  |  |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>Derate above 25°C | PD                   | 1.0<br>8.0  | Watts<br>mW/°C |  |  |
| Operating and Storage Junction<br>Temperature Range                   | TJ, T <sub>stg</sub> | -55 to +150 | °C             |  |  |

# THERMAL CHARACTERISTICS

| Characteristic                          | Symbol          | Мах | Unit |
|-----------------------------------------|-----------------|-----|------|
| Thermal Resistance, Junction to Ambient | $R_{\theta JA}$ | 357 | °C/W |
| Thermal Resistance, Junction to Case    | $R_{\theta}JC$  | 125 | °C/W |

ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                                                                            | Symbol   | Min | Max       | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------|------|
| OFF CHARACTERISTICS                                                                                                                                                       |          |     | •         | •    |
| Collector-Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$                                                                                                   | V(BR)CEO | 15  | _         | Vdc  |
| Collector-Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$                                                                                                          | V(BR)CBO | 30  | _         | Vdc  |
| Emitter-Base Breakdown Voltage (I <sub>E</sub> = 10 $\mu$ Adc, I <sub>C</sub> = 0)                                                                                        | V(BR)EBO | 6.0 | _         | Vdc  |
| Base Cutoff Current<br>(V <sub>CE</sub> = 12 Vdc, V <sub>EB(off)</sub> = 0.25 Vdc)<br>(V <sub>CE</sub> = 12 Vdc, V <sub>EB(off)</sub> = 0.25 Vdc, T <sub>A</sub> = 100°C) | IBEV     |     | 0.1<br>10 | μAdc |
| Collector Cutoff Current<br>(V <sub>CE</sub> = 12 Vdc, V <sub>EB(off)</sub> = 0.25 Vdc)                                                                                   | ICEX     | _   | 100       | nAdc |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Characteristic                                                                                                                                          | Symbol                                        | Min                              | Max                          | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|------------------------------|------|
| ON CHARACTERIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TICS                                                                                                                                                    |                                               |                                  |                              | -    |
| $      DC Current Gain \\ (I_C = 1.0 mAdc, V_{CE} \\ (I_C = 10 mAdc, V_{CE} \\ (I_C = 10 mAdc, V_{CE} \\ (I_C = 30 mAdc, V_{CE} \\ (I_C = 100 mAdc, V_{CE} \\ (I_C = 200 mAdc, V_{C$ | = 1.0 Vdc)<br>= 1.0 Vdc, $T_A = -55^{\circ}C$ )<br>= 1.0 Vdc)<br>E = 1.0 Vdc)<br>E = 1.0 Vdc) <sup>(1)</sup>                                            | hFE                                           | 25<br>40<br>20<br>40<br>30<br>20 | —<br>160<br>—<br>—<br>—<br>— | _    |
| Collector – Emitter Satu<br>( $I_C = 10 \text{ mAdc}, I_B =$<br>( $I_C = 100 \text{ mAdc}, I_B =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 mAdc)                                                                                                                                               | VCE(sat)                                      |                                  | 0.22<br>0.35                 | Vdc  |
| $\begin{array}{l} \text{Base}-\text{Emitter Saturati}\\ (\text{I}_{\text{C}}=\text{10 mAdc},\text{I}_{\text{B}}=\\ (\text{I}_{\text{C}}=\text{100 mAdc},\text{I}_{\text{B}}=\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 mAdc)                                                                                                                                               | V <sub>BE(sat)</sub><br>0.65 0.8<br>0.75 0.95 |                                  |                              | Vdc  |
| SMALL-SIGNAL CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IARACTERISTICS                                                                                                                                          |                                               |                                  |                              |      |
| Current-Gain — Band<br>(I <sub>C</sub> = 10 mAdc, V <sub>CE</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fΤ                                                                                                                                                      | 300                                           | -                                | MHz                          |      |
| Input Capacitance<br>(V <sub>EB</sub> = 0.5 Vdc, I <sub>C</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>ibo</sub>                                                                                                                                        | —                                             | 8.0                              | pF                           |      |
| Output Capacitance<br>(V <sub>CB</sub> = 5.0 Vdc, I <sub>E</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>obo</sub>                                                                                                                                        | _                                             | 4.0                              | pF                           |      |
| SWITCHING CHAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACTERISTICS                                                                                                                                             |                                               |                                  |                              |      |
| Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (V <sub>CC</sub> = 10 Vdc, V <sub>EB(off)</sub> = 2.0 Vdc,                                                                                              | td                                            | —                                | 8.0                          | ns   |
| Rise Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $I_{C} = 100 \text{ mAdc}, I_{B1} = 10 \text{ mAdc})$ (Fig. 1, Test Condition C)                                                                        | tr                                            | _                                | 15                           | ns   |
| Storage Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{CC} = 10$ Vdc, (I <sub>C</sub> = 10 mAdc, for t <sub>S</sub> )                                                                                      | t <sub>s</sub>                                | _                                | 20                           | ns   |
| Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(I_{C} = 100 \text{ mA for } t_{f})$ $(I_{B1} = -10 \text{ mA}) (I_{B2} = 10 \text{ mA}) (Fig. 1, Test Condition C)$                                   | t <sub>f</sub>                                | —                                | 15                           | ns   |
| Turn–On Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(V_{CC} = 3.0 \text{ Vdc}, \text{ V}_{EB(off)} = 1.5 \text{ Vdc},$<br>I <sub>C</sub> = 10 mAdc, I <sub>B1</sub> = 3.0 mAdc) (Fig. 1, Test Condition A) | ton                                           | —                                | 25                           | ns   |
| Turn–Off Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc},$                                                                                                   | toff                                          | —                                | 35                           | ns   |

| Turn–Off Time        | (V <sub>CC</sub> = 3.0 Vdc, I <sub>C</sub> = 10 mAdc,<br>I <sub>B1</sub> = 3.0 mAdc, I <sub>B2</sub> = 1.5 mAdc) (Fig. 1, Test Condition A) | <sup>t</sup> off | — | 35 |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|----|--|
| Storage Time         | $(V_{CC} = 10 \text{ Vdc}, I_C = 10 \text{ mA},$<br>$I_{B1} = I_{B2} = 10 \text{ mAdc})$ (Fig. 1, Test Condition B)                         | t <sub>S</sub>   | — | 20 |  |
| Total Control Charge | (V <sub>CC</sub> = 3.0 Vdc, $I_C$ = 10 mAdc, $I_B$ = mAdc)<br>(Fig. 3, Test Condition A)                                                    | QT               | — | 80 |  |

1. Pulse Test: Pulse Width =  $300 \ \mu$ s, Duty Cycle = 2.0%.

| Test<br>Condition | IC  | vcc | Rs   | RC  | C <sub>S(max)</sub> | V <sub>BE(off)</sub> | V <sub>1</sub> | V <sub>2</sub> | V <sub>3</sub> |
|-------------------|-----|-----|------|-----|---------------------|----------------------|----------------|----------------|----------------|
|                   | mA  | V   | Ω    | Ω   | pF                  | V                    | V              | V              | V              |
| Α                 | 10  | 3   | 3300 | 270 | 4                   | -1.5                 | 10.55          | -4.15          | 10.70          |
| В                 | 10  | 10  | 560  | 960 | 4                   | —                    |                | -4.65          | 6.55           |
| С                 | 100 | 10  | 560  | 96  | 12                  | -2.0                 | 6.35           | -4.65          | 6.55           |





ns

рС

#### **CURRENT GAIN CHARACTERISTICS**

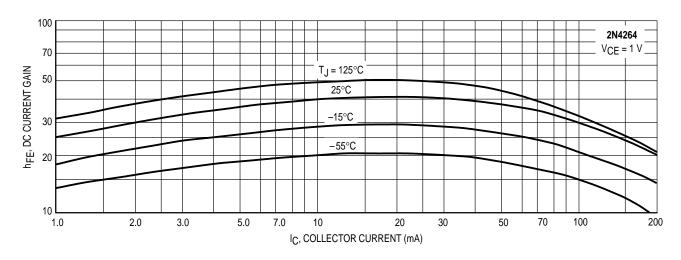



Figure 2. Minimum Current Gain

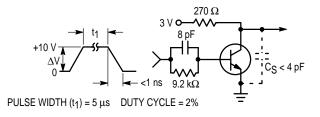



Figure 3. QT Test Circuit

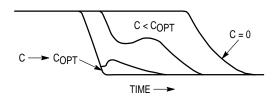
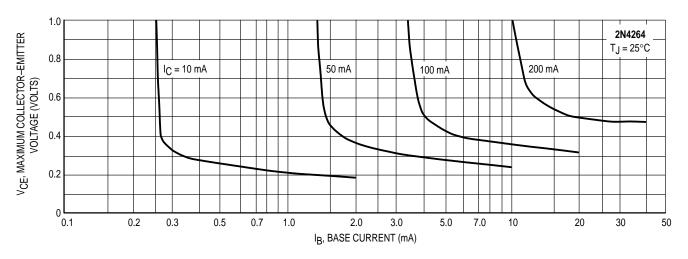



Figure 4. Turn–Off Waveform

When a transistor is held in a conductive state by a base current, I<sub>B</sub>, a charge,  $Q_S$ , is developed or "stored" in the transistor.  $Q_S$  may be written:  $Q_S = Q_1 + Q_V + Q_X$ .

 $Q_1$  is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency.  $Q_V$  is the charge required to charge the collector–base feedback capacity.  $Q_X$  is excess charge resulting from overdrive, i.e., operation in saturation.


The charge required to turn a transistor "on" to the edge of saturation is the sum of  $Q_1$  and  $Q_V$  which is defined as the active region charge,  $Q_A$ .  $Q_A = I_{B1}t_r$  when the transistor is driven by a constant current step

 $(I_{B1})$  and  $I_{B1} < < \frac{I_C}{h_{FE}}$ .

#### NOTE 1

If I<sub>B</sub> were suddenly removed, the transistor would continue to conduct until Q<sub>S</sub> is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, a charge, Q<sub>T</sub>, of opposite polarity, equal in magnitude, can be stored on an external capacitor, C, to neutralize the internal charge and considerably reduce the turn–off time of the transistor. Figure 3 shows the test circuit and Figure 4 the turn–off waveform. Given Q<sub>T</sub> from Figure 13, the external C for worst–case turn–off in any circuit is:  $C = Q_T/\Delta V$ , where  $\Delta V$  is defined in Figure 3.

# **"ON" CONDITION CHARACTERISTICS**





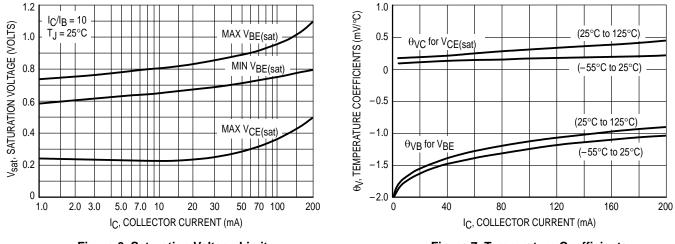



Figure 6. Saturation Voltage Limits

Figure 7. Temperature Coefficients

## **DYNAMIC CHARACTERISTICS**

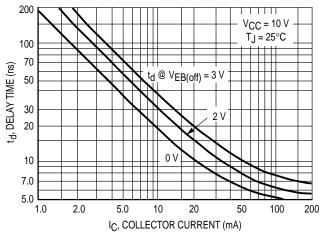



Figure 8. Delay Time

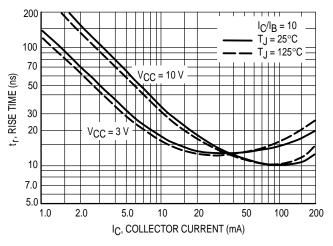



Figure 9. Rise Time

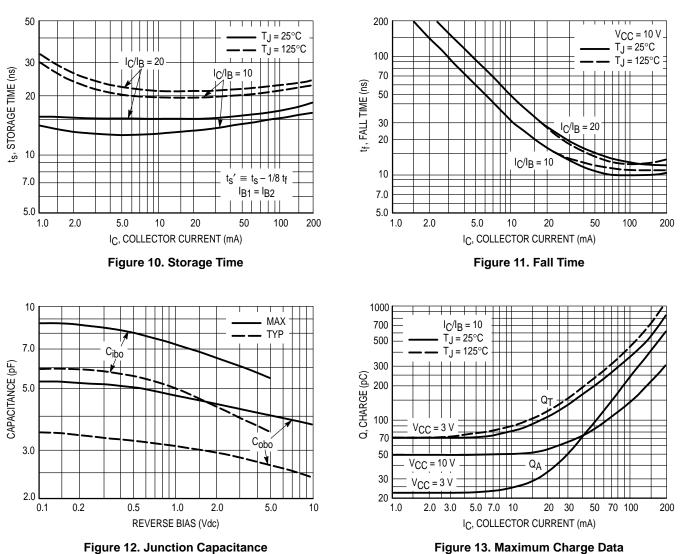
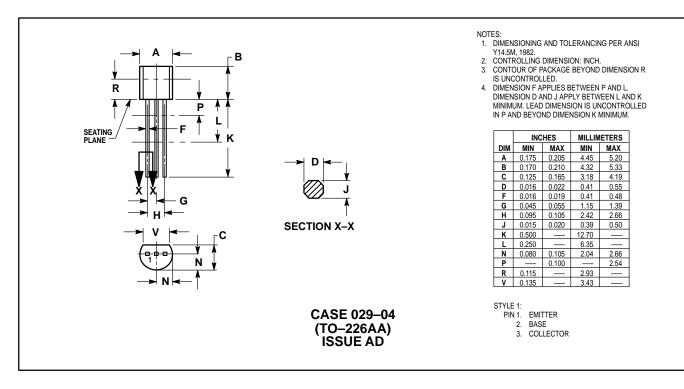




Figure 13. Maximum Charge Data

### PACKAGE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *w* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–18

INTERNET: http://motorola.com/sps



 - TOUCHTONE 602-244-6609
 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

 - US & Canada ONLY 1-800-774-1848
 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfax is a trademark of Motorola. Inc.