OVERVIEW

The CF5760 series devices are analog clock ICs that derive their timing from a 32.768 kHz oscillator element. They feature a reset function (optional seconds control function) which can be used to maintain accurate time. Various alarm functions and motor outputs are available to match a wide range of clock specifications.

FEATURES

- 1.2 to 2.0 V operating supply voltage
- $1.2 \mu \mathrm{~A}$ (typ) / 1.5 V current consumption
- 32.768 kHz oscillator circuit
- Oscillator capacitance C_{G} and C_{D} built-in
- Alarm output function
- Reset function (optional seconds control function)
- Input chattering elimination function (AI / R)
- Chip form (CF5760××)

PAD LAYOUT

SERIES CONFIGURATION

1. Built-in capacitance includes the parasitic capacitance.

ORDERING INFORMATION

Device	Package
CF5760××	Chip form

BLOCK DIAGRAM

PAD DESCRIPTION/DIMENSIONS

No.	Description	Dimensions $(\mu \mathrm{m})$		
			X	Y
1	VDD	Supply	155	1065
2	AI/R	Alarm input and reset input	155	854
3	01	Motor output 1	155	620
4	O2	Motor output 2	145	145
5	VSS	Ground	615	145
6	AO	Alarm output 1	615	325
7	AON	Alarm output 2	615	505
9	XTN	Oscillator output	615	746
XT	Oscillator input	615	1065	

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	$V_{D D}-V_{S S}$		-0.3 to 5.0	V
Input voltage range	$\mathrm{V}_{I N}$		$\mathrm{~V}_{S S} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{D D}$	V
Operating temperature range	$\mathrm{T}_{\text {opr }}$	-30 to 80	${ }^{\circ} \mathrm{C}$	
Storage temperature range	$\mathrm{T}_{\text {stg }}$		-65 to 150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{G}}=23 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}=25 \mathrm{pF}, \mathrm{X}$ 'tal ($\mathrm{f}_{0}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{I}}=50 \mathrm{k} \Omega$ max $)$ unless otherwise noted

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Operating voltage	$V_{D D}$		1.2	-	2.0	V
Current consumption	IDD	$01=02=$ open	-	1.2	4.0	$\mu \mathrm{A}$
Oscillator start-up time	$\mathrm{t}_{\text {STA }}$	$V_{D D}=1.2 \mathrm{~V}$	-	-	5.0	s
Motor output current	IMOT	$V_{D D}=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega^{1}$	4.0	-	-	mA
AI/R HIGH-level input current	I_{H}	$V_{D D}=1.5 \mathrm{~V}$	2	4	8	$\mu \mathrm{A}$
AI/R LOW -level input current	IIL	$V_{D D}=1.5 \mathrm{~V}$	2	4	8	$\mu \mathrm{A}$
Oscillator frequency stability	$\Delta \mathrm{f} / \mathrm{f}$	$V_{D D}=1.2$ to 2.0 V	-	0.5	1.0	ppm/0.1V
Alarm LOW -level output current ${ }^{2}$$(A O, A O N)$	$10 \mathrm{L1}$	$V_{D D}=1.5 \mathrm{~V}, \mathrm{~V}_{O L}=0.75 \mathrm{~V}$	900	2000	-	$\mu \mathrm{A}$
	I_{012}	$V_{D D}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.75 \mathrm{~V}$	10	30	-	$\mu \mathrm{A}$
Alarm HIGH-level output current ${ }^{2}$$(A O, A O N)$	IOH_{1}	$V_{D D}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=0.75 \mathrm{~V}$	900	2000	-	$\mu \mathrm{A}$
	IOH 2	$V_{D D}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=0.75 \mathrm{~V}$	10	30	-	$\mu \mathrm{A}$
F output voltage ${ }^{3}$	V_{F}	$\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{C}_{L}=50 \mathrm{pF}$	0.4	-	-	V
Internal capacitance ${ }^{4}$	C_{G}		Refer to the SERIES LINEUP			pF
	C_{D}					pF

1. R_{L} is the load resistance connected between 01 and 02 .
2. CF5760AA/CC/FC/ HA: If the outputs (AO or AON) are short circuit, the output current is $I_{A O} \geq 900 \mu \mathrm{~A}$.
3. The F output voltage rating, $V F$, when a load capacitance, C_{L}, is connected between pin F and $V S S$, is the difference voltage between the center voltage, $0.5 \mathrm{~V}_{\mathrm{DD}}$, and the peak voltage.
4. C_{G} is the capacitance between VDD and $X T . C_{D}$ is the capacitance between VDD and XTN.

FUNCTIONAL DESCRIPTION

Motor Output

Motor output waveform (step motor driver)

Motor output waveform (sweep motor driver)

Input Chattering Elimination Function (AI/R)

A bounce delay is provided on the AI / R input to eliminate erroneous operation caused by input bounce (chattering).

$t_{O N}<62.5 \mathrm{~ms}$: input is ignored.
$62.5 \leq t_{0 \mathrm{~N}} \leq 125 \mathrm{~ms}$: indeterminate
$t_{0 \mathrm{~N}}>125 \mathrm{~ms}$: input is accepted.

Input Control Functions

When AI / R is open circuit, a 256 Hz signal is output.
When AI/R is HIGH or LOW, it selects the alarm (HIGH)/reset (LOW) function or reset (HIGH)/alarm (LOW) function depending on the version.

Reset Function (optional seconds control function)

When AI / R goes active level for a reset, the motor output stops. When the reset is released, the first motor output pulse occurs on the output pin opposite to that which had the last output pulse immediately before the reset.

Alarm Output

Alarm output waveform

*1: Opposite phase to AO.
$\mathrm{f}_{\mathrm{PW}}=$ alarm fundamental frequency
${ }^{\mathrm{f}} \mathrm{CY}$ = alarm modulation frequency

F Output Function

The AON pin may be replaced by the F pin which is used to output a 32 kHz signal (unaffected by the reset function).

TYPICAL APPLICATION CIRCUITS

Alarm (HIGH)/Reset (LOW), Piezoelectric alarm

Reset (HIGH)/Alarm (LOW), DC Output, F Output

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.
4-3, Fukuzumi 2-chome
Koto-ku, Tokyo 135-8430, Japan
Telephone: 03-3642-6661
Facsimile: 03-3642-6698

