SPDT SWITCH GaAs MMIC

■GENERAL DESCRIPTION

NJG1522KB2 is a GaAs SPDT switch suited for RF receiving circuit of cellular phone handsets.

This switch features very low loss, high isolation and exhibits wide operating frequency range from 50 MHz to 3.0 GHz at low voltage of 2.5 V .

The ultra small \& ultra thin FLP6 package is applied.

■PACKAGE OUTLINE

NJG1522KB2

■FEATURES

-Single low voltage control
-Low insertion loss
-High isolation
-Handling power
-Low current consumption
-Ultra small \& ultra thin package
$+2.5 \sim+6.5 \mathrm{~V}$
0.3 dB typ. @f=1GHz, $\mathrm{P}_{\text {in }}=0 \mathrm{dBm}$
0.5 dB typ. $@ f=2 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=0 \mathrm{dBm}$

27 dB typ. $@ f=1 \sim 2 \mathrm{GHz}, \mathrm{P}_{\text {in }}=0 \mathrm{dBm}$
20 dBm max. @f=2GHz, $\mathrm{V}_{\text {стL }}=2.7 \mathrm{~V}$
$8 u A \quad$ typ. @f=2GHz, $P_{i n}=10 \mathrm{dBm}$
FLP6-B2 (Mount Size: $2.1 \times 2.0 \times 0.75 \mathrm{~mm}$)

■PIN CONFIGURATION

■TRUTH TABLE

$$
" \mathrm{H} "=\mathrm{V}_{\text {CTL }(H), ~ " L "=V_{\text {CTL }(L)}}
$$

$\mathrm{V}_{\text {CTL1 }}$	H	L	L	H
$\mathrm{V}_{\text {CTL2 }}$	L	H	L	H
PC-P1	ON	OFF	Insertion Loss=17dB P 1 Return Loss=-2dB	Insertion Loss=18dB P 1 Return Loss=-2dB
PC-P2	OFF	ON	Insertion Loss=17dB P2 Return Loss $=-2 d B$	Insertion Loss=18dB P 2 Return Loss=-2dB

NOTE: The values in the table are typical value of insertion loss and return loss.

NJG1522KB2

IABSOLUTE MAXIMUM RATINGS
$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right.$)

PARAMETERS	SYMBOL	CONDITIONS	RATINGS	UNITS
Input Power	P_{in}	$\mathrm{V}_{\text {CTL }(L)}=0 \mathrm{~V}, \mathrm{~V}_{\text {CTL }(H)}=2.7 \mathrm{~V}$	28	dBm
Control Voltage	$\mathrm{V}_{\text {CTL }}$	$\mathrm{V}_{\text {CTL }(H))}-\mathrm{V}_{\text {CTL }(L)}$	7.5	V
Power Dissipation	P_{D}		450	mW
Operating Temp.	$\mathrm{T}_{\text {opr }}$		$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$		$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

■ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\text {CTL }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}(\mathrm{H})}=2.7 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{I}}=50 \Omega, \mathrm{C} 6=10 \mathrm{pF}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Control voltage (Low)	$\mathrm{V}_{\text {CTL (L) }}$		-0.2	0	0.2	V
Control voltage (High)	$\mathrm{V}_{\text {CTL (H) }}$		2.5	2.7	6.5	V
Control current	$\mathrm{I}_{\text {ctL }}$	$\mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=10 \mathrm{dBm}$	-	8	14	uA
Insertion loss 1	LOSS1	$f=1.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=0 \mathrm{dBm}$	-	0.3	0.6	dB
Insertion loss 2	LOSS2	$\mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=0 \mathrm{dBm}$	-	0.5	0.8	dB
Isolation 1 (PC-P1, PC-P2, P1-P2)	ISL1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=0 \mathrm{dBm}$	25.5	27	-	dB
Isolation 2 (PC-P1, PC-P2, P1-P2)	ISL2	$\mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=0 \mathrm{dBm}$	25	27	-	dB
Pin at 1 dB compression point	$\mathrm{P}_{\text {-ddB }}$	$\mathrm{f}=2.0 \mathrm{GHz}$	20	24	-	dBm
VSWR (PC, P1, P2)	VSWR	$\mathrm{f}=0.05 \sim 2.2 \mathrm{GHz}$, ON State	-	1.3	1.6	
Switching time	$\mathrm{T}_{\text {sw }}$	$\mathrm{f}=0.05 \sim 2.5 \mathrm{GHz}$	-	20	-	ns

TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTIONS
1	P1	RF port. This port is connected with PC port by controlling $6^{\text {th }}$ pin $\left(\mathrm{V}_{\text {СTL(H) }}\right)$ to $2.5 \sim 6.5 \mathrm{~V}$ and $4^{\text {th }} \operatorname{pin}\left(\mathrm{V}_{\text {CTLLL }}\right)$ to $-0.2 \sim+0.2 \mathrm{~V}$. An external capacitor is required to block the DC bias voltage of internal circuit. ($50 \sim 100 \mathrm{MHz}$: $0.01 \mathrm{uF}, 0.1 \sim 0.5 \mathrm{GHz}: 1000 \mathrm{pF}, 0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF}$)
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	P2	RF port. This port is connected with PC port by controlling $4^{\text {th }}$ pin $\left(\mathrm{V}_{\text {СтL(Н) }}\right)$ to $2.5-6.5 \mathrm{~V}$ and $6^{\text {th }} \operatorname{pin}\left(\mathrm{V}_{\text {CTLLL }}\right)$ to $-0.2 \sim+0.2 \mathrm{~V}$. An external capacitor is required to block the DC bias voltage of internal circuit. ($50 \sim 100 \mathrm{MHz}$: $0.01 \mathrm{uF}, 0.1 \sim 0.5 \mathrm{GHz}: 1000 \mathrm{pF}, 0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF})$
4	$V_{\text {CTL2 }}$	Control port 2. The voltage of this port controls PC to P2 state. The 'ON' and 'OFF' state is toggled by controlling voltage of this terminal such as high-state $(2.5 \sim 6.5 \mathrm{~V})$ or low-state $(-0.2 \sim+0.2 \mathrm{~V})$. The voltage of $6^{\text {th }}$ pin have to be set to opposite state. The bypass capacitor has to be chosen to reduce switching time delay from $10 \mathrm{pF} \sim 1000 \mathrm{pF}$ range.
5	PC	Common RF port. In order to block the DC bias voltage of internal circuit, an external capacitor is required. ($50 \sim 100 \mathrm{MHz}: 0.01 \mathrm{uF}, 0.1 \sim 0.5 \mathrm{GHz}$: $1000 \mathrm{pF}, 0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF})$
6	$\mathrm{V}_{\text {CTL1 }}$	Control port 1. The voltage of this port controls PC to P2 state. The 'ON' and 'OFF' state is toggled by controlling voltage of this terminal such as high-state $(2.5 \sim 6.5 \mathrm{~V})$ or low-state $(-0.2 \sim+0.2 \mathrm{~V})$. The voltage of $4^{\text {th }}$ pin have to be set to opposite state. The bypass capacitor has to be chosen to reduce switching time delay from $10 \mathrm{pF} \sim 1000 \mathrm{pF}$ range.

NJG1522KB2

ELECTRICAL CHARACTERISTICS

($0.1 \sim 3.0 \mathrm{GHz}$, with Application circuit, Losses of external circuit are excluded)

IELECTRICAL CHARACTERISTICS
(with application circuit, without DC Blocking Capacitor, Losses of external circuit are excluded)

NJG1522KB2

■ELECTRICAL CHARACTERISTICS
($f=50 \sim 100 \mathrm{MHz}$, with Application circuit (Parts list 1), Losses of PCB, connector and DC blocking capacitor are included)

PC-P1 Isolation vs. Frequency

PC-P2 Insertion Loss vs. Frequency

PC-P2 Isolation vs. Frequency

P1-PC,P2-PC VSWR vs. Frequency

- ELECTRICAL CHARACTERISTICS

($f=100 \sim 500 \mathrm{MHz}$, with Application circuit (Parts list 2), Losses of PCB, connector and DC blocking capacitor are included)

PC-P1 Insertion Loss vs. Frequency

PC-P1 Isolation vs. Frequency

PC-P1 VSWR vs. Frequency

PC-P2 Insertion Loss Vs. Frequency

PC-P2 Isolation vs. Frequency

PC-P1,P2-PC VSWR vs. Frequency

NJG1522KB2

ELECTRICAL CHARACTERISTICS

($f=0.1 \sim 3.0 \mathrm{GHz}$, with Application circuit (Parts list 3), Losses of PCB, connector and DC blocking capacitor are included)

PC-P1 Isolation vs. Frequency

PC-P1 VSWR vs. Frequency

PC-P2 Insertion Loss vs. Frequency

PC-P2 Isolation vs. Frequency

P1-PC,P2-PC VSWR vs. Frequency
$\left(V_{\text {CTL1 }}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL2}}=0 \mathrm{~V}, \mathrm{P} 1\right.$ port $)$

ELECTRICAL CHARACTERISTICS

(Losses of PCB, connector and DC blocking capacitor at each frequency.)

NJG1522KB2

■APPLICATION CIRCUIT

Parts List

Parts number	List 1	List 2	List 3	Notes
	$50 \sim 100 \mathrm{MHz}$	$0.1 \sim 0.5 \mathrm{GHz}$	$0.5 \sim 2.5 \mathrm{GHz}$	
C1~C3	0.01 uF	1000 pF	56 pF	GRM36 MURATA
C4, C5	10 pF	10 pF	10 pF	GRM36 MURATA

■RECOMMENDED PCB DESIGN

PCB SIZE $=19.4 \times 14.0 \mathrm{~mm}$
PCB: FR-4, $t=0.2 \mathrm{~mm}$
CAPACITOR: size 1005
STRIPLINE WIDTH=0.4mm

PRECAUTIONS

[1]The DC blocking capacitors have to be placed at RF terminal of P1, P2 and PC. Please choose appropriate capacitance values to the application frequency.
[2]To reduce stripline influence on RF characteristics, please locate bypass capacitors(C4, C5) close to each terminals.
[3]For good isolation, the GND terminal ($2^{\text {nd }} \mathrm{pin}$) must be placed possibly close to ground plane of substrate, and through holes for GND should be placed near by the pin connection.

PACKAGE OUTLINE

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

