FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

DESCRIPTION

This is a family of 4194304-word by 4-bit dynamic RAMS, fabricated with the high performance CMOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential.

The use of double-layer metal process combined with twin-well CMOS technology and a single-transistor dynamic storage stacked capacitor cell provide high circuit density at reduced costs. Multiplexed address inputs permit both a reduction in pins and an increase in system densities.

FEATURES

	RAS	CAS	Address	OE		Power
Type Name	access time (max.ns)	access time (max.ns)	access time (max.ns)	access time (max.ns)	Cycle time (min.ns)	dissipa- tion (typ.mW)
M5M417400CXX-5,-5S	50	13	25	13	90	655
M5M417400CXX-6,-6S	60	15	30	15	110	540
M5M417400CXX-7,-7S	70	20	35	20	130	475

XX=J, TP

- Standard 26 pin SOJ, 26 pin TSOP
- Single 5V ± 10% supply
- Low stand-by power dissipation 5.5mW(Max).....CMOS Input level 2.2mW (Max)*....CMOS Input level

- Fast-page mode, Read-modify-write, RAS-only refresh
- CAS before RAS refresh, Hidden refresh capabilities Early-write mode and OE to control output buffer impedance
- · All inputs, output TTL compatible and low capacitance
- 2048 refresh cycles every 32ms (A₀ ~ A₁₀)
 *Applicable to self refresh version (M5M417400CJ,TP-5S,-6S, -7S :option) only

APPLICATION

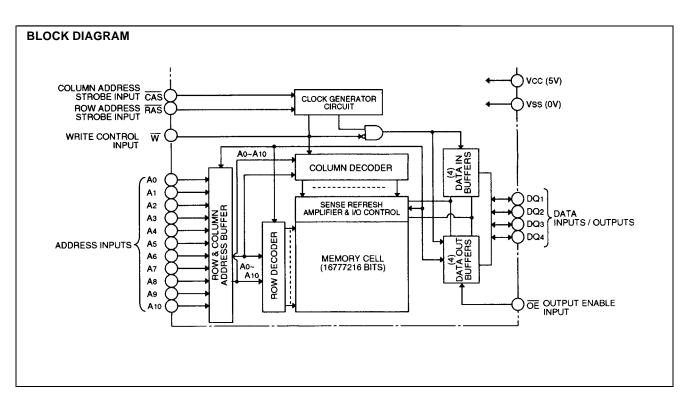
Main memory unit for computers, Microcomputer memory, Refresh memory for CRT

PIN DESCRIPTION

Pin name	Function
A ₀ ~ A ₁₁	Address inputs
$DQ_1 \sim DQ_4$	Data inputs / outputs
RAS	Row address strobe input
CAS	Column address strobe input
W	Write control input
ŌĒ	Output enable input
V _{CC}	Power supply (+5V)
V _{SS}	Ground (0V)

PIN CONFIGURATION (TOP VIEW)	
Outline 26P0D-B (300mil SOJ)	
. ,	
Outline 26P3D-E (300mil TSOP)	

NC: NO CONNECTION


FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

FUNCTION

The M5M417400CJ,TP provide, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., fast page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

			Inp	outs			Input/0	Output		Remark
Operation	RAS	CAS	W	OE	Row address	Column address	Input	Output	Refresh	
Read	ACT	ACT	NAC	ACT	APD	APD	OPN	VLD	YES	Fast
Write (Early write)	ACT	ACT	ACT	DNC	APD	APD	VLD	OPN	YES	page
Write (Delayed write)	ACT	ACT	ACT	DNC	APD	APD	VLD	IVD	YES	mode
Read-modify-write	ACT	ACT	ACT	ACT	APD	APD	VLD	VLD	YES	identical
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	DNC	OPN	YES	
Hidden refresh	ACT	ACT	NAC	ACT	APD	DNC	OPN	VLD	YES	
Self refresh	ACT	ACT	NAC	DNC	DNC	DNC	DNC	OPN	YES	
CAS before RAS refresh	ACT	ACT	NAC	DNC	DNC	DNC	DNC	OPN	YES	
Stand-by	NAC	DNC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, IVD: invalid, APD: applied, OPN: open

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-1 ~ 7	V
VI	Input voltage	With respect to V _{SS}	-1 ~ 7	V
Vo	Output voltage		-1 ~ 7	V
lo	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
T _{opr}	Operating temperature		0 ~ 70	°C
T _{stg}	Storage temperature		-65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Parameter			Unit	
Symbol	Falanetei	Min	Nom	Max	Offic
V _{CC}	Supply voltage	4.5	5	5.5	V
V _{SS}	Supply voltage	0	0	0	V
V _{IH}	High-level input voltage, all inputs	2.4		5.5	V
V _{IL}	Low-level input voltage, all inputs	-1.0**		0.8	V

Note 1: All voltage values are with respect to V_{SS}.
**: V_{IL(min.)} is -2.0V when undershoot width is less than 25ns. (Undershoot width is with respect to V_{SS}.)

ELECTRICAL CHARACTERISTICS

(Ta = 0 ~ 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Limits		Unit
Symbol	Falameter		rest conditions	Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} = -5.0mA	2.4		V _{CC}	V
V _{OL}	Low-level output voltage		I _{OL} = 4.2mA	0		0.4	V
I _{OZ}	Off-state output current		Q floating $0V \le V_{OUT} \le 5.5V$	-10		10	μΑ
I _I	Input current		$0V \le V_{IN} \le 5.5V$, Other inputs pins = $0V$	-10		10	μΑ
	Average supply current	M5M417400C-5,-5S	RAS, CAS cycling			145	
I _{CC1(AV)}	from V_{CC} , operating	M5M417400C-6,-6S	$t_{RC} = t_{WC} = min.$			120	mA
	(Note 3,4)	M5M417400C-7,-7S	output open			105	
			$\overline{RAS} = \overline{CAS} = V_{IH}$, output open			2	
I _{CC2}	Supply current from V _{CC} , stand-by	(Note 5)	$\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2V$			0.5	mA
	Average supply current	M5M417400C-5,-5S	\overline{RAS} cycling, $\overline{CAS} = V_{IH}$			145	
I _{CC3 (AV)}	from V _{CC} , refreshing	M5M417400C-6,-6S	t _{RC} = min.			120	mA
	(Note 3)	M5M417400C-7,-7S	output open			105	
	Average supply current	M5M417400C-5,-5S	RAS = V _{IL} , CAS cycling			80	
I _{CC4 (AV)}	from V _{CC} , Fast-Page-Mode	M5M417400C-6,-6S	t _{PC} = min.			70	mA
	(Note 3,4)	M5M417400C-7,-7S	output open			60	
	Average supply current from V_{CC} ,	M5M417400C-5,-5S	CAS before RAS refresh cycling			145	
I _{CC6 (AV)}	CAS before RAS refresh mode	M5M417400C-6,-6S	t _{RC} = min.			120	mA
	(Note 3)	M5M417400C-7,-7S	output open			105	

Note 2: Current flowing into an IC is positive, out is negative.

3: I_{CC1} (AV), I_{CC3} (AV), I_{CC4} (AV) and I_{CC6} (AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: I_{CC1} (AV) and I_{CC4} (AV) are dependent on output loading. Specified values are obtained with the output open.

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

CAPACITANCE

(Ta = 0 ~ 70°C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit			
Symbol	Falanteter		Min	Тур	Max	Onit	
C _{I(A)}	Input capacitance, address inputs				5	pF	
CI(OE)	Input capacitance, OE input				7	pF	
$C_{I(\overline{W})}$	Input capacitance, write control input	$V_I = V_{SS}$ f = 1MHz			7	pF	
CI(RAS)	Input capacitance, RAS input	$V_1 = 25 \text{mVrms}$			7	pF	
CI(CAS)	Input capacitance, CAS input				7	pF	
C _{I/O}	Input/Output capacitance, data ports				8	pF	

SWITCHING CHARACTERISTICS

(Ta = 0 ~ 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted, see notes 5, 12, 13)

				Limits							
Symbol	Parameter		M5M4174	00C-5,-5S	M5M4174	00C-6,-6S	M5M417400C-7,-7S		Unit		
			Min	Max	Min	Max	Min	Max			
t _{CAC}	Access time from CAS	(Note 6, 7)		13		15		20	ns		
t _{RAC}	Access time from RAS	(Note 6, 8)		50		60		70	ns		
t _{AA}	Column address access time	(Note 6, 9)		25		30		35	ns		
t _{CPA}	Access time from CAS precharge	(Note 6, 10)		30		35		40	ns		
t _{OEA}	Access time from OE	(Note 6)		13		15		20	ns		
t _{CLZ}	Output low impedance time from CAS low	(Note 6)	5		5		5		ns		
t _{OFF}	Output disable time after CAS high	(Note 11)	0	13	0	15	0	15	ns		
t _{OEZ}	Output disable time after OE high	(Note 11)	0	13	0	15	0	15	ns		

Note 5: An initial pause of 500 µ s is required after power-up followed by a minimum of eight initialization RAS cycles. The initialization cycles should be done either by RAS-only refresh cycles or by CAS before RAS refresh cycles only.

Note the RAS may be cycled during the initial pause. And any 8 RAS or RAS/CAS cycles are required after prolonged periods (greater than 32ms) of RAS inactivity before proper device operation is achieved.

After the initialization cycles, RAS should be kept either higher than VIH(min) or lower than VIL(max) except RAS transition time.

6: Measured with a load circuit equivalent to 2 TTL loads and 100pF.

7: Assumes that $t_{RCD} \ge t_{RCD(max)}$ and $t_{ASC} \ge t_{ASC(max)}$.

8: Assumes that $t_{RCD} \le t_{RCD(max)}$ and $t_{RAD} \le t_{RAD(max)}$. If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by amount that t_{RCD} exceeds the value shown.

9: Assumes that $t_{RAD} \geq t_{RAD(max)} \text{ and } t_{ASC} \leq \ t_{ASC(max)}.$

10: Assumes that $t_{CP} \le t_{CP(max)}$ and $t_{ASC} \ge t_{ASC(max)}$.

11: toFF(max) and toEZ(max) defines the time at which the output achieves the high impedance state (I_OUT ≤ | ± 10 µA |) and is not reference to V_{OH(min)} or V_{OL(max)}.

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Fast-Page Mode Cycles)

(Ta = 0 ~ 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted. See notes 12, 13)

			Limits						
Symbol	Parameter		M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit
			Min	Max	Min	Max	Min	Max	
t _{REF}	Refresh cycle time			32		32		32	ms
t _{RP}	RAS high pulse width		30		40		50		ns
t _{RCD}	Delay time, RAS low to CAS low	(Note 14)	18	37	20	45	20	50	ns
t _{CRP}	Delay time, \overline{CAS} high to \overline{RAS} low		10		10		10		ns
t _{RPC}	Delay time, RAS high to CAS low		0		0		0		ns
t _{CPN}	CAS high pulse width		10		10		10		ns
t _{RAD}	Column address delay time from RAS low	(Note 15)	13	25	15	30	15	35	ns
t _{ASR}	Row address setup time before RAS low		0		0		0		ns
t _{ASC}	Column address setup time before CAS low	(Note 16)	0	10	0	10	0	10	ns
t _{RAH}	Row address hold time after RAS low		8		10		10		ns
t _{CAH}	Column address hold time after CAS low		13		15		15		ns
t _{DZC}	Delay time, data to CAS low	(Note 17)	0		0		0		ns
t _{DZO}	Delay time, data to OE low	(Note 17)	0		0		0		ns
t _{CDD}	Delay time, CAS high to data	(Note 18)	13		15		15		ns
t _{ODD}	Delay time, \overline{OE} high to data	(Note 18)	13		15		15		ns
t _T	Transition time	(Note 19)	1	50	1	50	1	50	ns

Note 12: The timing requirements are assumed $t_T = 5ns$.

13: V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals.

14: t_{RCD(max}) is specified as a reference point only. If t_{RCD} is less than t_{RCD(max}), access time is t_{RAC}. If t_{RCD} is greater than t_{RCD(max}), access time is controlled exclusively by t_{CAC} or t_{AA}. t_{RCD(min}) is specified as t_{RCD(min}) = t_{RAH(min}) + 2t_H + t_{ASC(min}).

15: $t_{RAD(max)}$ is specified as a reference point only. If $t_{RAD} \ge t_{RAD(max)}$ and $t_{ASC} \le t_{ASC(max)}$, access time is controlled exclusively by t_{AA} .

16: $t_{ASC(max)}$ is specified as a reference point only. If $t_{RCD} \ge t_{RCD(max)}$ and $t_{ASC} \ge t_{ASC(max)}$, access time is controlled exclusively by t_{CAC} .

17: Either t_{DZC} or t_{DZO} must be satisfied.

18: Either $t_{\mbox{CDD}}$ or $t_{\mbox{ODD}}$ must be satisfied.

19: t_T is measured between $V_{IH(min)}$ and $V_{IL(max)}$.

Read and Refresh Cycles

			Limits						
Symbol	Parameter	Parameter		M5M417400C-5,-5S		M5M417400C-6,-6S		00C-7,-7S	Unit
			Min	Max	Min	Max	Min	Max	
t _{RC}	Read cycle time		90		110		130		ns
t _{RAS}	RAS low pulse width		50	10000	60	10000	70	10000	ns
t _{CAS}	CAS low pulse width		13	10000	15	10000	20	10000	ns
t _{CSH}	CAS hold time after RAS low		50		60		70		ns
t _{RSH}	RAS hold time after CAS low		13		15		20		ns
t _{RCS}	Read setup time after CAS high		0		0		0		ns
t _{RCH}	Read hold time after CAS low (N	lote 20)	0		0		0		ns
t _{RRH}	Read hold time after RAS low (N	lote 20)	10		10		10		ns
t _{RAL}	Column address to RAS hold time		25		30		35		ns
t _{OCH}	CAS hold time after OE low		13		15		20		ns
t _{ORH}	RAS hold time after OE low		13		15		20		ns

Note 20: Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

Write Cycle (Early Write and Delayed Write)

		Limits							
Symbol	Parameter	M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit	
		Min	Max	Min	Max	Min	Max		
t _{WC}	Write cycle time	90		110		130		ns	
t _{RAS}	RAS low pulse width	50	10000	60	10000	70	10000	ns	
t _{CAS}	CAS low pulse width	13	10000	15	10000	20	10000	ns	
t _{CSH}	CAS hold time after RAS low	50		60		70		ns	
t _{RSH}	RAS hold time after CAS low	13		15		20		ns	
t _{WCS}	Write setup time before CAS low (Note 22)	0		0		0		ns	
t _{WCH}	Write hold time after CAS low	8		10		10		ns	
t _{CWL}	\overline{CAS} hold time after \overline{W} low	13		15		20		ns	
t _{RWL}	\overline{RAS} hold time after \overline{W} low	13		15		20		ns	
t _{WP}	Write pulse width	8		10		10		ns	
t _{DS}	Data setup time before \overline{CAS} low or \overline{W} low	0		0		0		ns	
t _{DH}	Data hold time after $\overline{\text{CAS}}$ low or $\overline{\text{W}}$ low	8		10		15		ns	
t _{OEH}	\overline{OE} hold time after \overline{W} low	13		15		20		ns	

Read-Write and Read-Modify-Write Cycles

			Limits						
Symbol	Parameter		M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit
		Min	Max	Min	Max	Min	Max		
t _{RWC}	Read write/read modify write cycle time ((Note 21)	131		155		180		ns
t _{RAS}	RAS low pulse width		91	10000	105	10000	120	10000	ns
t _{CAS}	CAS low pulse width		54	10000	60	10000	70	10000	ns
t _{CSH}	CAS hold time after RAS low		91		105		120		ns
t _{RSH}	RAS hold time after CAS low		54		60		70		ns
t _{RCS}	Read setup time before CAS low		0		0		0		ns
t _{CWD}	Delay time, \overline{CAS} low to \overline{W} low ((Note 22)	36		40		45		ns
t _{RWD}	Delay time, \overline{RAS} low to \overline{W} low ((Note 22)	73		85		95		ns
t _{AWD}	Delay time, address to \overline{W} low ((Note 22)	48		55		60		ns
t _{CWL}	\overline{CAS} hold time after \overline{W} low		13		15		20		ns
t _{RWL}	\overrightarrow{RAS} hold time after \overrightarrow{W} low		13		15		20		ns
t _{WP}	Write pulse width		8		10		10		ns
t _{DS}	Data setup time before \overline{W} low		0		0		0		ns
t _{DH}	Data hold time after \overline{W} low		8		10		15		ns
t _{OEH}	\overline{OE} hold time after \overline{W} low		13		15		15		ns

Note 21: t_{RWC} is specified as $t_{RWC(min)} = t_{RAC(max)} + t_{ODD(min)} + t_{RWL(min)} + t_{RP(min)} + 5t_{T}$.

Note 22: $t_{WCS}, t_{CWD}, t_{RWD}$ and t_{AWD} and t_{CPWD} are specified as reference points only. If $t_{WCS} \ge t_{WCS(min)}$ the cycle is an early write cycle and the DQ pins will remain high impedance throughout the entire cycle. If $t_{CWD} \ge t_{CWD(min)}, t_{RWD} \ge t_{RWD(min)}, t_{AWD} \ge t_{AWD(min)}$ and $t_{CPWD} \ge t_{CPWD(min)}$ (for fast page mode cycle only), the cycle is a read-modify-write cycle and the DQ will contain the data read from the selected address. If neither of the above condition (delayed write) of the DQ (at access time and until \overline{CAS} or \overline{OE} goes back to V_{IH}) is indeterminate.

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

Fast-Page Mode Cycle (Read, Early Write, Read-Write, Read-Modify-Write Cycle)

(Note 23)

		Limits							
Symbol	bol Parameter		M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit
			Min	Max	Min	Max	Min	Max	
t _{PC}	Fast page mode read/write cycle time		35		40		45		ns
t _{PRWC}	Fast page mode read write/read modify write	cycle time	76		85		95		ns
t _{RAS}	RAS low pulse width for read write cycle	(Note 24)	85	125000	100	125000	115	125000	ns
t _{CP}	CAS high pulse width	(Note 25)	8	12	10	15	10	15	ns
t _{CPRH}	RAS hold time after CAS precharge		30		35		40		ns
t _{CPWD}	Delay time, \overline{CAS} precharge to \overline{W} low	(Note 22)	53		60		65		ns

Note 23: All previously specified timing requirements and switching characteristics are applicable to their respective fast page mode cycle.

24: t_{RAS(min)} is specified as two cycles of CAS input are performed.

25: t_{CP(max)} is specified as a reference point only.

CAS before RAS Refresh Cycle

(Note 26)

		Limits						
Symbol	Parameter	M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit
1		Min	Max	Min	Max	Min	Max	
t _{CSR}	CAS setup time before RAS low	10		10		10		ns
t _{CHR}	CAS hold time after RAS low	10		10		15		ns
t _{RSR}	Read setup time before RAS low	10		10		10		ns
t _{RHR}	Read hold time after RAS low	10		10		15		ns

Note 26: Eight or more CAS before RAS cycles instead of eight RAS cycles are necessary for proper operation of CAS before RAS refresh mode.

SELF REFRESH SPECIFICATIONS

Self refresh devices are denoted by "S" after speed item, like -5S/-6S/-7S. The other characteristics and requirements than the below are same as normal devices.

ELECTRICAL CHARACTERISTICS

(Ta = 0 ~ 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Unit		
Symbol			Test conditions	Min	Тур	Max	Onic
I _{CC8(AV)}	Average supply current from VCC Slow-Refresh cycle (Note 5)	M5M417400C (S)	$\label{eq:cases} \begin{split} &\overline{CAS} \text{ before }\overline{RAS} \text{ refresh cycling} \\ & \text{or }\overline{RAS} \text{ cycling }\&\overline{CAS} \leq 0.2 \text{V} \\ & \text{OE }\& \text{WE} \leq 0.2 \text{V} \\ & \text{or }\overline{OE} \& \text{WE} \geq V_{CC} \cdot 0.2 \text{V} \\ & A_0 \sim A_{10} \leq 0.2 \text{V} \\ & \text{or }A_0 \sim A_{10} \geq V_{CC} \cdot 0.2 \text{V} \\ & \text{t}_{REF} = 128 \text{ms} \left(2048 \text{ cycles} \right) \\ & \text{output} = \text{OPEN} \\ & \text{t}_{RAS} = \text{t}_{RASmin} \sim 1 \mu \text{s} \end{split}$			500	μΑ
I _{CC9(AV)}	Average supply current from VCC Slow-Refresh cycle (Note 5)	M5M417400C (S)	RAS = CAS ≤ 0.2V output = OPEN			200	μΑ

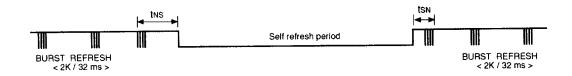
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

TIMING REQUIREMENTS

(Ta = 0 ~ 70°C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted, see notes 12, 13)

		Limits						
Symbol	Parameter	M5M417400C-5S		M5M417400C-6S		M5M417400C-7S		Unit
		Min	Max	Min	Max	Min	Max	
t _{RASS}	Self Refresh RAS low pulse width	100		100		100		μs
t _{RPS}	Self Refresh RAS high precharge time	90		110		130		ns
t _{CHS}	Self Refresh RAS hold time	-50		-50		-50		ns
t _{RSR}	Read setup time before RAS low	10		10		10		ns
t _{RHR}	Read hold time after RAS low	10		10		15		ns

SELF REFRESH ENTRY & EXIT CONDITIONS

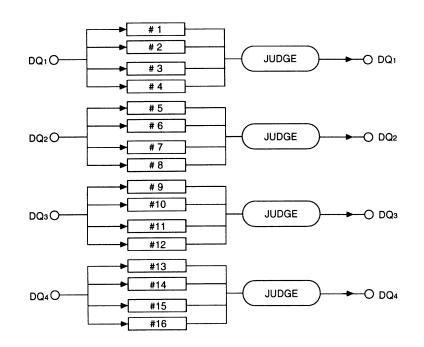

1. In case of distributed refresh

The last / first full refresh cycles (2K) must be made within t_{NS} / t_{SN} before / after self refresh, on the condition of $t_{NS} \le 32$ ms and $t_{SN} \le 32$ ms.

2. In case of burst refresh

The last / first full refresh cycles (2K) must be made within t_{NS} / t_{SN} before / after self refresh, on the condition of $t_{NS} + t_{SN} \le 32$ ms.

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

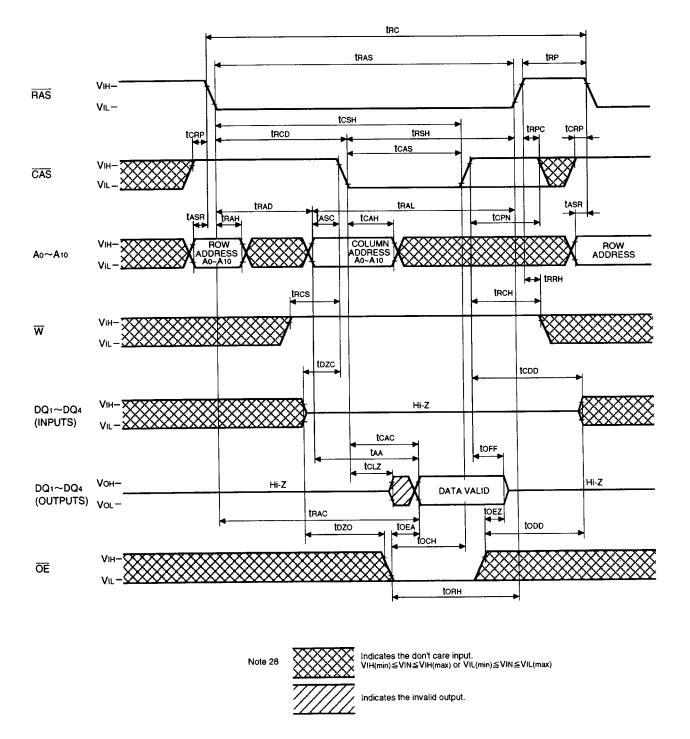

TEST Mode SET Cycle

				Lin	nits			
Symbol	Parameter	M5M417400C-5,-5S		M5M417400C-6,-6S		M5M417400C-7,-7S		Unit
		Min	Max	Min	Max	Min	Max	1
t _{WSR}	W setup time before RAS low	10		10		10		ns
t _{WHR}	\overline{W} hold time after \overline{RAS} low	10		10		15		ns

Note 27: The test mode function is initiated by a W and CAS before RAS cycle (WCBR cycle) as specified in timing diagram. The test mode function is terminated by either a CAS before RAS refresh cycle (CBR refresh cycle) or a RAS only refresh cycle.

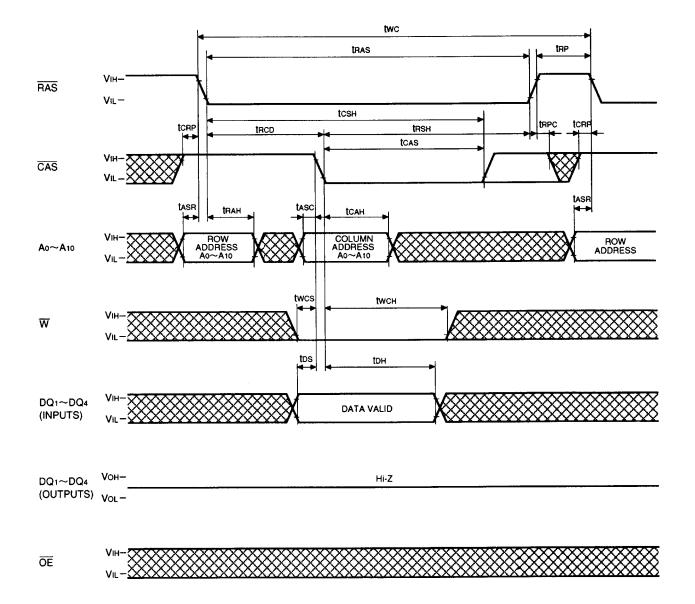
During the test mode, the device is internally organized as 16-bits wide (1M bytes depth). No addressing of CA₁ and CA₁ is required. During a write cycle, data must be applied to all DQ (input) pins. The data can be different between DQ pins. The data on each DQ pin is written into 4-bits memory cells, respectively. During a read cycle, each DQ (output) pin shows the test result of the 4-bits, respectively. High state indicates that they are same. Low state indicates that they are not same.

During the test mode operation, only WCBR cycle can be used to perform refresh.

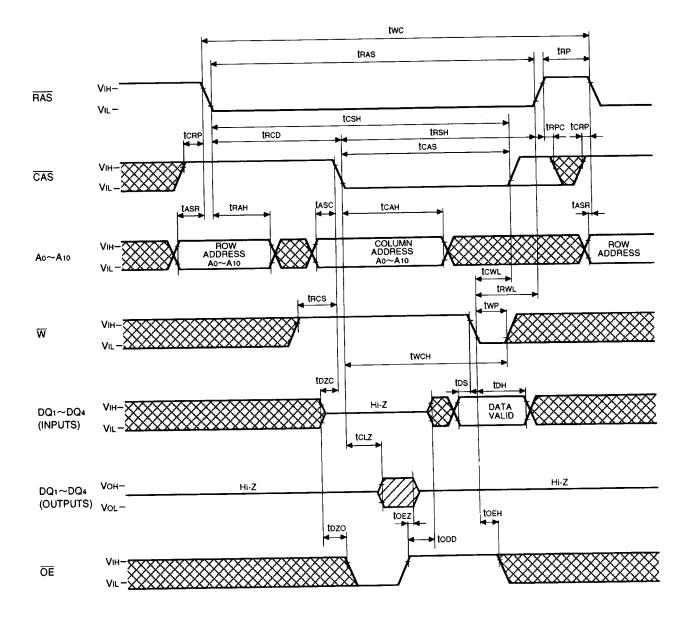


FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

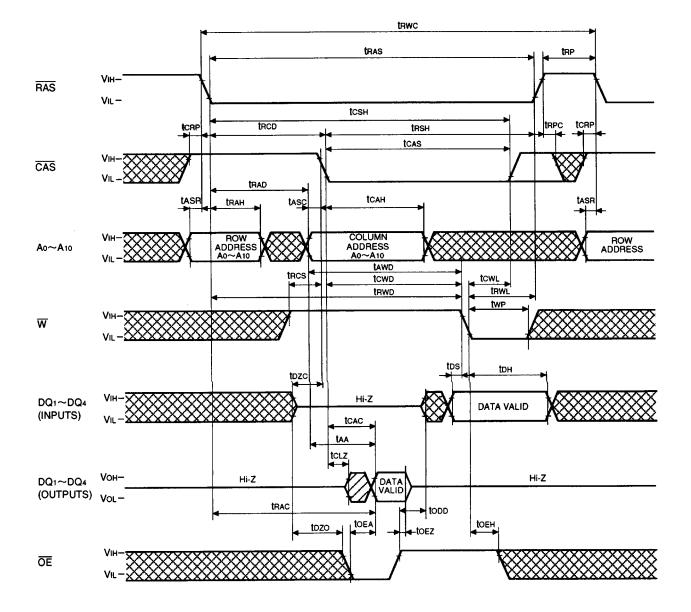
Timing Diagrams Read Cycle


(Note 28)

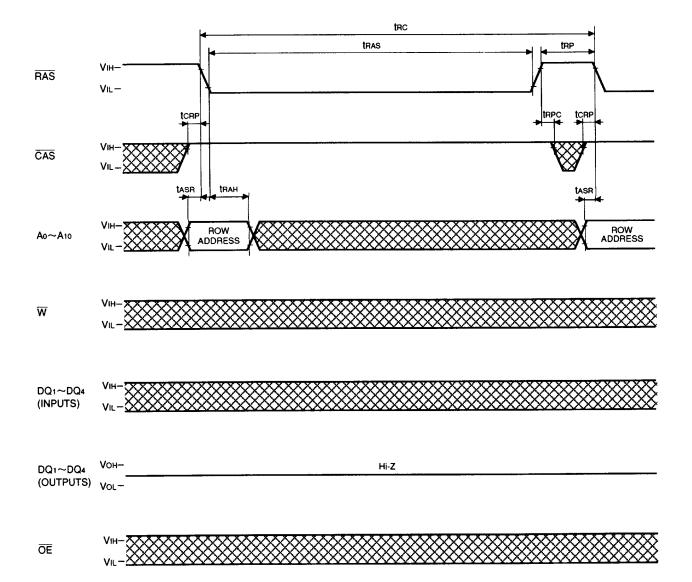
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Write Cycle (Early Write)

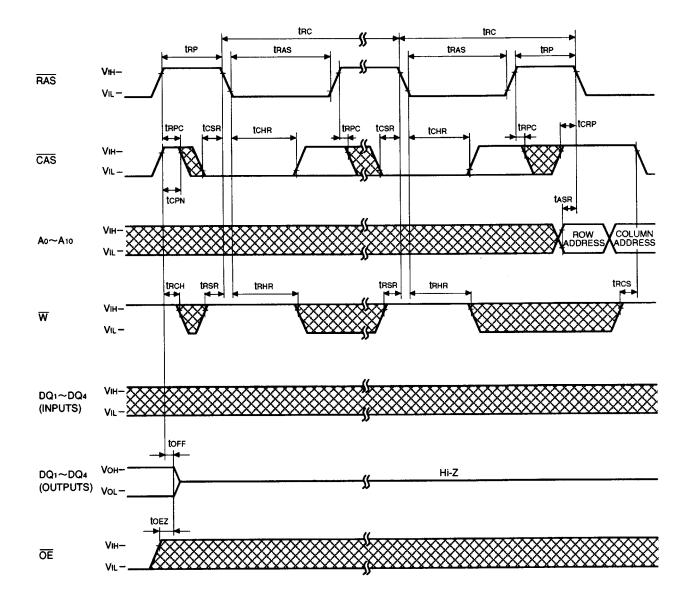
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Write Cycle (Delayed Write)

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

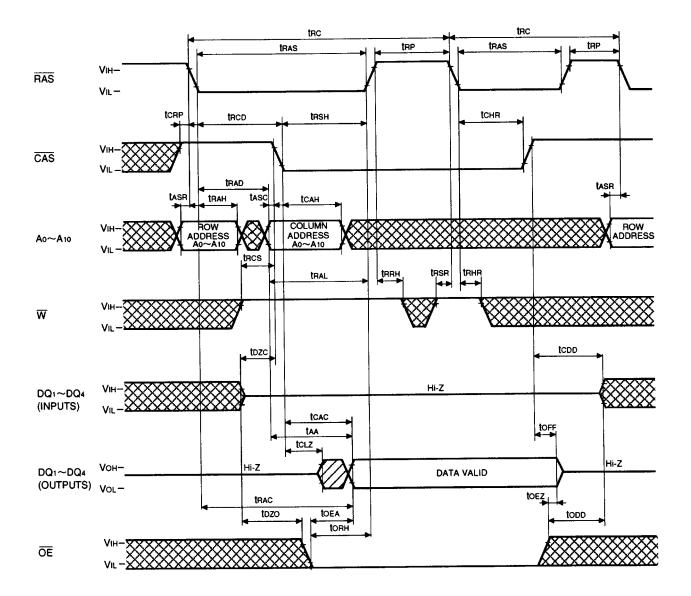

Read-Write, Read-Modify-Write Cycle

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


RAS-only Refresh Cycle

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

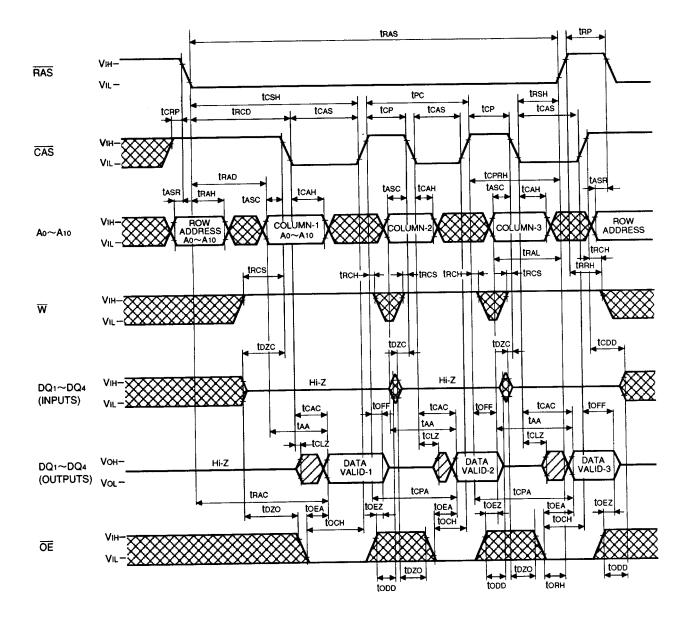
CAS before RAS Refresh Cycle, Slow Refresh Cycle



FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

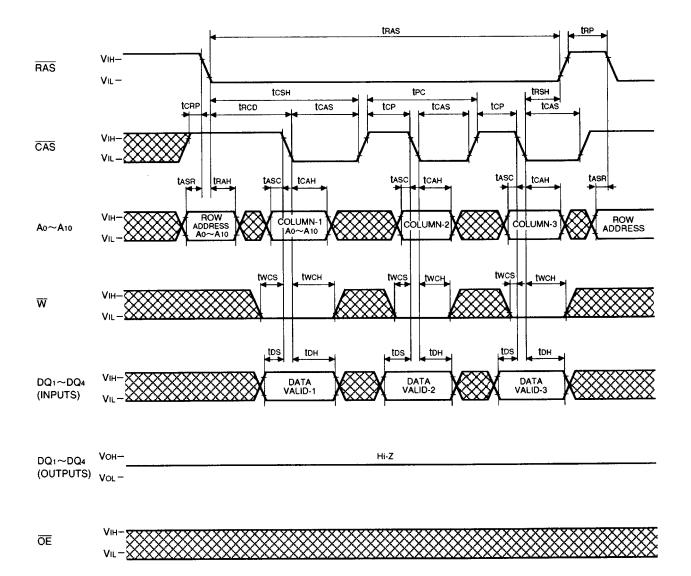
Hidden Refresh Cycle (Read)

(Note 29)

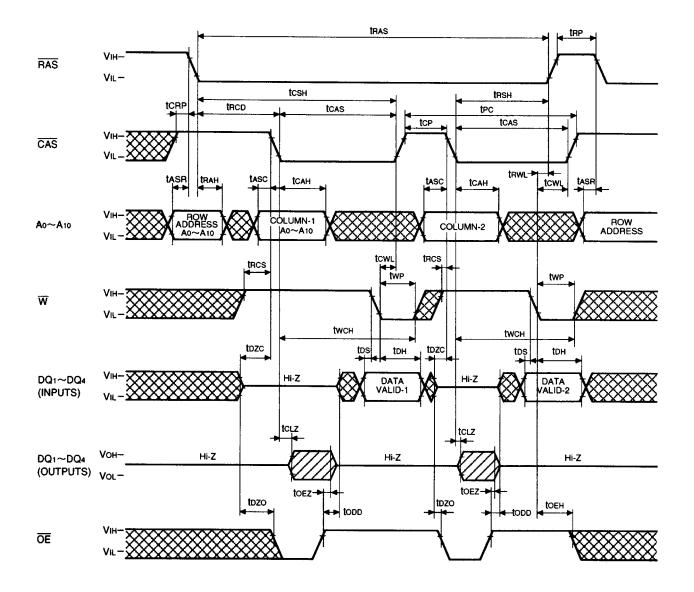


Note 29: Early write, delayed write, read write or read modify write cycle is applicable instead of read cycle. Timing requirements and output state are the same as that of each cycle shown above. And in any cycle, t_{RSR} & t_{RHR} should be satisfied not to enter TEST MODE.

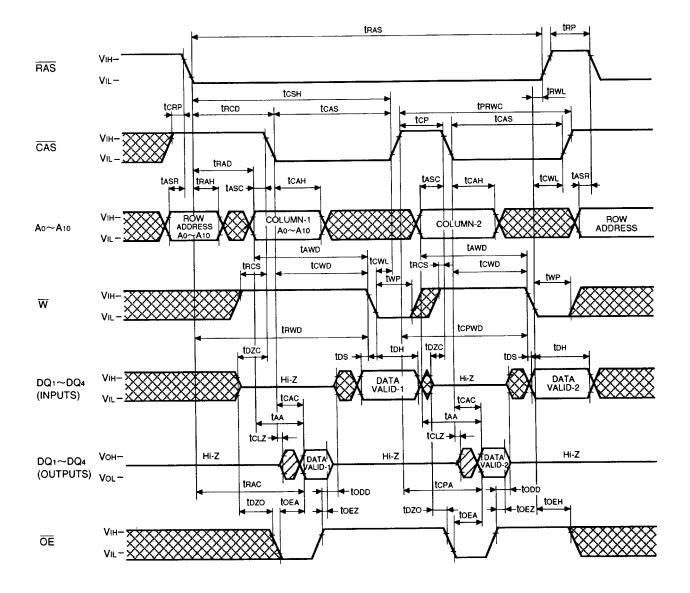
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Fast Page Mode Read Cycle

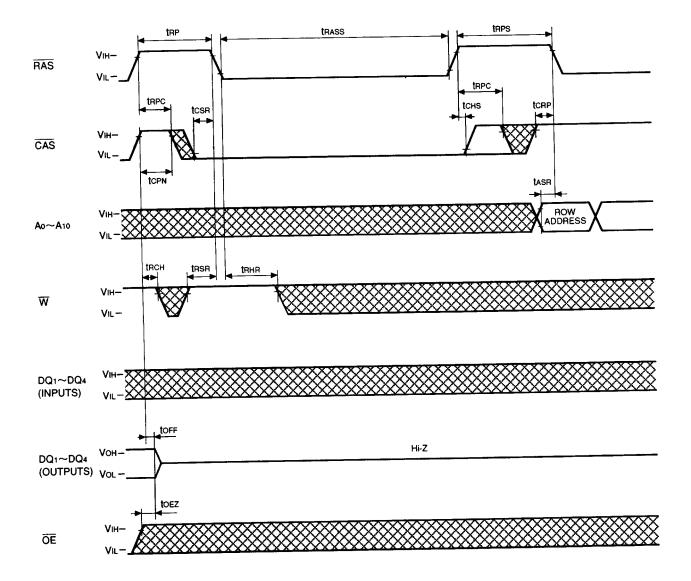
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Fast Page Mode Write Cycle (Early Write)

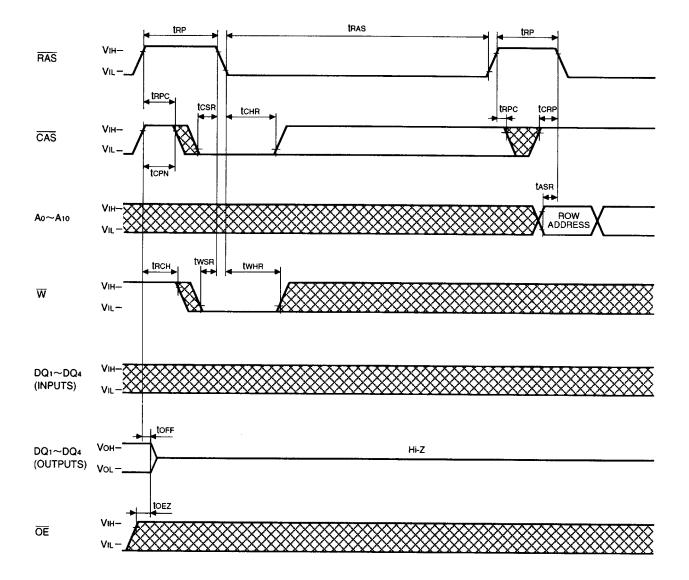
FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Fast-Page Mode Write Cycle (Delayed Write)

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Fast Page Mode Read-Write, Read-Modify-Write Cycle

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM


Self Refresh Cycle

FAST PAGE MODE 16777216-BIT (4194304-WORD BY 4-BIT) DYNAMIC RAM

TEST Mode SET Cycle

Note 30: This cycle can be used for initialized cycle after power-up, however entried into Test Mode.

