1998.11.30 Ver.B

MITSUBISHI LSIS M5M54R01AJ-12,-15

PRELIMMARY Notice: This is not a final specification. Some parametric limits are subject to change

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

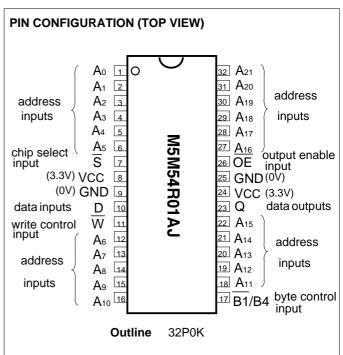
DESCRIPTION

The M5M54R01AJ is a family of 4194304-word by 1-bit static RAMs, fabricated with the high performance CMOS silicon gate process and designed for high speed application.

These devices operate on a single 3.3V supply, and are directly TTL compatible. They include a power down feature as well.

FEATURES

•Fast access time

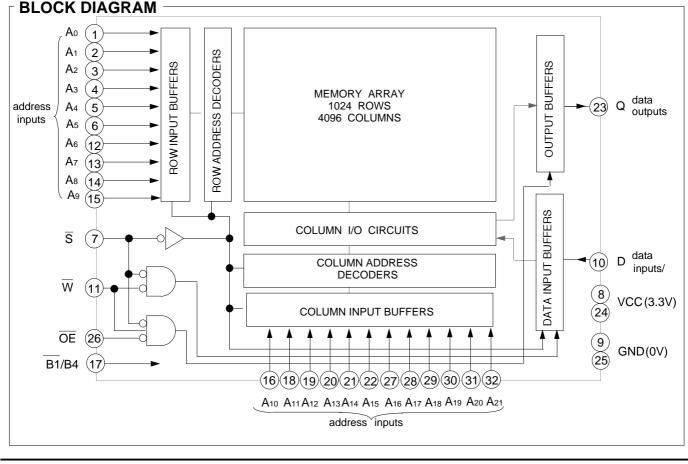

M5M54R01AJ-12 ... 12ns(max) M5M54R01AJ-15 ... 15ns(max)

•Single +3.3V power supply

- •Fully static operation : No clocks, No refresh
- Easy memory expansion by S
- •Three-state outputs : OR-tie capability

•OE prevents data contention in the I/O bus

•Directly TTL compatible : All inputs and outputs



APPLICATION

High-speed memory units

PACKAGE M5M54R01AJ

: 32pin 400mil SOJ

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M54R01AJ is determined by a combination of the device control inputs \overline{S} , \overline{W} and \overline{OE} . Each mode is summarized in the function table.

A write cycle is executed whenever the low level W overlaps with the low level S. The address must be set-up before the write cycle and must be stable during the entire cycle.

The data is latched into a cell on the trailing edge of \overline{W} or \overline{S} , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high impedance state, and the data bus

contention problem in the write cycle is eliminated.

A read cycle is excuted by setting \overline{W} at a high level and \overline{OE} at a low level while \overline{S} are in an active state (\overline{S} =L).

When setting \overline{S} at high level, the chip is in a non-selectable mode in which both reading and writing are disable. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by \overline{S} .

Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissapation is reduced extremely. The access time from \overline{S} is equivalent to the address access time.

The RAM works with an organization of 4194304-word by 1bit, when B1/B4 is low of floating. And an organization of 1048576-word by 4bit is also obtained for reducing the test time, when B1/B4 is high. The pin configuration and function is as same as M5M54R04AJ.

FUNCTION TABLE

B1/B4	S	W	OE	Mode	D	Q	lcc
L	Н	Х	Х	Non selection	High-impedance	High-impedance	Stand by
L	L	L	X	Write	Din	High-impedance	Active
L	L	Н	L	Read	High-impedance	Dout	Active
L	L	Н	Н		High-impedance	High-impedance	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		- 2.0*~ 4.6	V
Vi	Input voltage	With respect to GND	- 2.0 [*] ~ VCC+0.5	V
Vo	Output voltage	-	- 2.0 [*] ~ VCC	V
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating temperature		0 ~ 70	°C
Tstg(bias)	Storage temperature(bias)		- 10 ~ 85	°C
T _{stg}	Storage temperature		- 65 ~ 150	°C

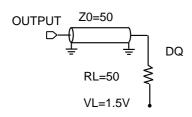
* Pulse width_3ns, In case of DC: - 0.5V

DC ELECTRICAL CHARACTERISTICS (Ta=0 ~ 70°C, Vcc=3.3V^{+10%}, unless otherwise noted)

Doromotor	Condition						
Parameter				Min	Тур	Max	Unit
High-level input voltage				2.0		Vcc+0.3	V
Low-level input voltage						0.8	V
High-level output voltage	I _{OH} = - 4mA			2.4			V
Low-level output voltage	IOL = 8mA					0.4	V
Input current	VI= 0 ~ Vcc					2	uA
Output current in off-state	$V_{I(\overline{S})}=V_{IH}$ $V_{I/O}=0 \sim V_{CC}$					2	uA
Active supply current (TTL level)	VI(S)=VIL other inpus=VIH or VIL Output-open(duty 100%)		12ns cycle			180	mA
		AC	15ns cycle			160	
		DC	DC			90	
Stand by ourrant	VI(S)=VIH	AC	12ns cycle			70	
(TTL level)			15ns cycle			60	mA
						40	
Stand by current VI(s)=Vcc_0.2V other inputs VI_0.2V or VI_Vcc - 0.2V				10	mA		
	High-level input voltage Low-level input voltage High-level output voltage Low-level output voltage Input current Output current in off-state Active supply current (TTL level) Stand by current (TTL level)	High-level input voltage Low-level input voltageI I OH= - 4mAHigh-level output voltageI I OH= - 4mALow-level output voltageI I OL = 8mAInput currentVI= 0 ~ VccOutput current in off-stateVI(\overline{S})=VIH VI/ O = 0 ~ VccActive supply current (TTL level)VI(\overline{S})=VIL other inpus=VIH or VIL Output-open(duty 100%)Stand by current (TTL level)VI(\overline{S})=Vcc_0.2V other inputs VI 0.2V	High-level input voltage Low-level input voltageI I OH= - 4mALow-level output voltageI IOH= - 4mALow-level output voltageIOL = 8mAInput currentVI= 0 ~ VccOutput current in off-stateVI(\overline{S})=VIH VI/ O = 0 ~ VccActive supply current (TTL level)VI(\overline{S})=VIL 	High-level input voltage Low-level input voltageI I OH= - 4mAHigh-level output voltageI I OH= - 4mALow-level output voltageI I I I I I Output currentInput currentVI= 0 ~ VccOutput current in off-stateVI(\overline{S})=VIH VI/ \overline{S})=VIL other inpus=VIH or VIL Output-open(duty 100%)Active supply current (TTL level)VI(\overline{S})=VIL other inpus=VIH or VIL Output-open(duty 100%)Stand by current (TTL level)VI(\overline{S})=VIH VI(\overline{S})=VIHVI(\overline{S})=VIH OUTPUT-OPEN(DUTY)ACStand by current (TTL level)VI(\overline{S})=VCC_0.2V other inputs VI 0.2V	High-level input voltageMinHigh-level input voltage2.0High-level output voltage $I_{OH} = -4mA$ High-level output voltage $I_{OH} = -4mA$ Low-level output voltage $I_{OH} = -4mA$ Input current $IOL = 8mA$ Input current $VI = 0 \sim Vcc$ Output current in off-state $VI(\overline{S}) = VIH$ $VI/O = 0 \sim Vcc$ Active supply current (TTL level) $VI(\overline{S}) = VIL$ other inpus=VIH or VIL Output-open(duty 100%)Stand by current (TTL level) $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ AC $I2ns cycle$ $ITL level$ $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ AC $I2ns cycle$ $ITL level$ $I2ns cycle$ $VI(\overline{S}) = VIH$ IC $VI(\overline{S}) = VIH$ IC $ITL level$ II $III level$ II $III level$ III $III level$ III $III level$ <tr< td=""><td>High-level input voltageMinTypHigh-level input voltage2.0Low-level input voltage$I_{OH} = -4mA$High-level output voltage$I_{OH} = -4mA$Low-level output voltage$I_{OH} = -4mA$Low-level output voltage$I_{OH} = -4mA$Input current$I_{OH} = -4mA$Input current$VI = 0 \sim Vcc$Output current in off-state$VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ $VIOH = 0 \sim Vcc$Active supply current (TTL level)$VI(\overline{S}) = VIL$ other inpus = VIH or VIL Output-open(duty 100%)Stand by current (TTL level)$VI(\overline{S}) = VIH$$VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$$AC$$AC$ $12ns cycle$$I2ns cycle$$AC$ $15ns cycle$$I2ns cycle$$AC$ $15ns cycle$$I2ns cycle$$ITL$ <math>ISIN$VI(\overline{S}) = VIH$$VI(\overline{S}) = VIH$$AC$$ISIN cycle$$I2ns cycle$$ISIN cycle$$III$$ITL$$IIII$$ITL$$IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</math></td><td>ParameterConditionMinTypMaxHigh-level input voltage2.0Vcc+0.3Low-level input voltageIOH = - 4mA2.0Vcc+0.3High-level output voltageIOH = - 4mA2.40.8Low-level output voltageIOL = 8mA0.40.4Input currentVI= 0 ~ Vcc20.4Output current in off-stateVI(S)=VIH VI/O= 0 ~ Vcc22Output current in off-stateVI(S)=VIH VI/O= 0 ~ Vcc22Active supply current (TTL level)VI(S)=VIL Output-open(duty 100%)AC12ns cycle180Stand by current (TTL level)VI(S)=VIH VI(S)=VIHAC12ns cycle160DC909015ns cycle40Stand by current (TTL level)VI(S)=VIH VI(S)=VC_0.2VAC12ns cycle40Stand by current (TTL level)VI(S)=VC_0.2V1040</td></tr<>	High-level input voltageMinTypHigh-level input voltage2.0Low-level input voltage $I_{OH} = -4mA$ High-level output voltage $I_{OH} = -4mA$ Low-level output voltage $I_{OH} = -4mA$ Low-level output voltage $I_{OH} = -4mA$ Input current $I_{OH} = -4mA$ Input current $VI = 0 \sim Vcc$ Output current in off-state $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ $VIOH = 0 \sim Vcc$ Active supply current (TTL level) $VI(\overline{S}) = VIL$ other inpus = VIH or VIL Output-open(duty 100%)Stand by current (TTL level) $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ $VI(\overline{S}) = VIH$ AC AC $12ns cycle$ $I2ns cycle$ AC $15ns cycle$ $I2ns cycle$ AC $15ns cycle$ $I2ns cycle$ ITL $ISINVI(\overline{S}) = VIHVI(\overline{S}) = VIHACISIN cycleI2ns cycleISIN cycleIIIITLIIIIITLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	ParameterConditionMinTypMaxHigh-level input voltage2.0Vcc+0.3Low-level input voltageIOH = - 4mA2.0Vcc+0.3High-level output voltageIOH = - 4mA2.40.8Low-level output voltageIOL = 8mA0.40.4Input currentVI= 0 ~ Vcc20.4Output current in off-stateVI(S)=VIH VI/O= 0 ~ Vcc22Output current in off-stateVI(S)=VIH VI/O= 0 ~ Vcc22Active supply current (TTL level)VI(S)=VIL Output-open(duty 100%)AC12ns cycle180Stand by current (TTL level)VI(S)=VIH VI(S)=VIHAC12ns cycle160DC909015ns cycle40Stand by current (TTL level)VI(S)=VIH VI(S)=VC_0.2VAC12ns cycle40Stand by current (TTL level)VI(S)=VC_0.2V1040

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

Ourseland	Parameter	Tast Ose divisor		1.10.14		
Symbol		Test Condition	Min	Тур	Max	Unit
Сі	Input capacitance	V _I =GND, V _I =25mVrms,f=1MHz			8	pF
Со	Output capacitance	V _O =GND, V _O =25mVrms,f=1MHz			8	pF


CAPACITANCE (Ta=0~70°C, Vcc=3.3V^{+10%}_{-5%}, unless otherwise noted)

Note 2: CI,CO are periodically sampled and are not 100% tested.

AC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, Vcc=3.3V ^{+10%} ,unless otherwise noted)

(1)MEASUREMENT CONDITION

Input pulse levels	VIH=3.0V, VIL=0.0V
Input rise and fall time	3ns
Input timing reference levels	VIH=1.5V, VIL=1.5V
Output timing reference levels V	OH =1.5V, VOL=1.5V
Output loads	Fig.1,Fig.2

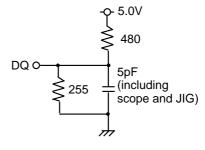
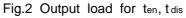
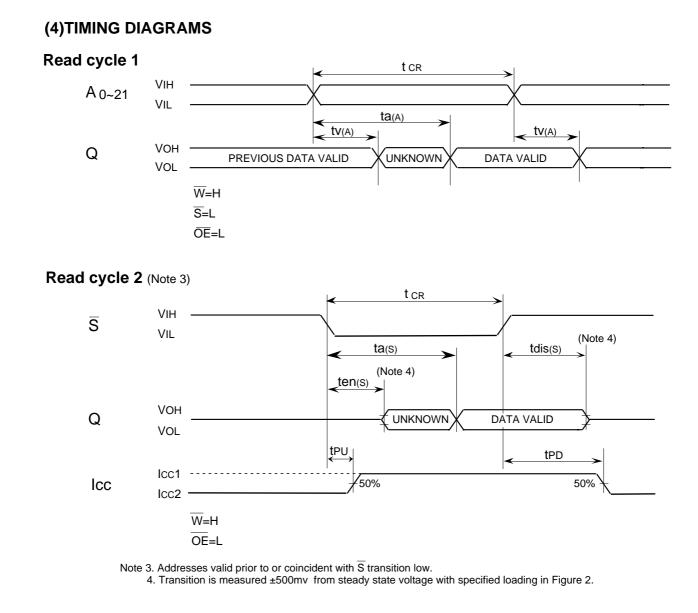
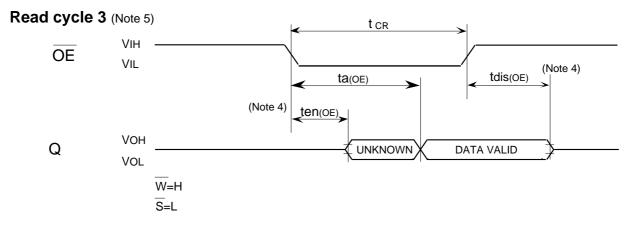



Fig.1 Output load

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

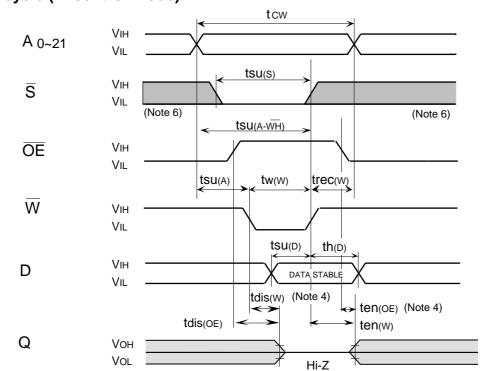
(2)READ CYCLE


Symbol	Parameter		Limits					
		M5M54F	R01AJ-12	M5M54R	Unit			
			Max	Min		Max		
t CR	Read cycle time	12		15		ns		
ta(A)	Address access time		12		15	ns		
ta(s)	Chip select access time		12		15	ns		
ta(OE)	Output enable access time		6		7	ns		
tdis(S)	Output disable time after \overline{S} high	0	6	0	7	ns		
tdis(OE)	Output disable time after \overline{OE} high	0	6	0	7	ns		
ten(S)	Output enable time after \overline{S} low	3		3		ns		
ten(OE)	Output enable time after OE low	1		1		ns		
tv(A)	Data valid time after address change	3		3		ns		
tPU	Power-up time after chip selection	0		0		ns		
tPD	Power-down time after chip selection		12		15	ns		

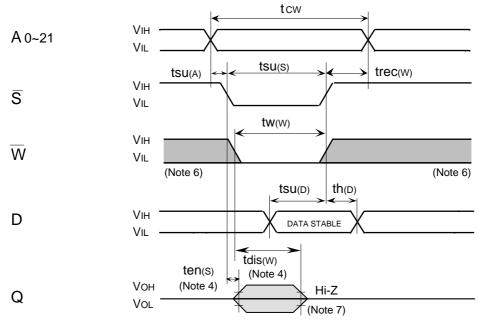

(3)WRITE CYCLE

Symbol	Parameter		Limits					
		M5M54	R01AJ-12	M5M54R01AJ-15		Unit		
		Min	Max	Min	Max			
t _{CW}	Write cycle time	12		15		ns		
tw(W)	Write pulse width (OE low)	12		15		ns		
tw(W)	Write pulse width(OE high)	10		10		ns		
tsu(A)1	Address setup time (\overline{W})	0		0		ns		
tsu(A)2	Address setup time $\overline{(S)}$	0		0		ns		
tsu(S)	Chip select setup time	10		10		ns		
tsu(D)	Data setup time	6		7		ns		
th(D)	Data hold time	0		0		ns		
trec(W)	Write recovery time	1		1		ns		
tdis(W)	Output disable time after \overline{W} low	0	6	0	7	ns		
tdis(OE)	Output disable time after OE high	0	6	0	7	ns		
ten(W)	Output enable time after \overline{W} high	0		0		ns		
ten(OE)	Output enable time after \overline{OE} low	0		0		ns		
tsu(A-WH)	Address to \overline{W} High	10		10		ns		

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM



Note 5. Addresses and \overline{S} valid prior to \overline{OE} transition low by (ta(A)-ta(OE)), (ta(S)-ta(OE))



4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

Write cycle (\overline{W} control mode)

Write cycle(\overline{S} control)

Note 6: Hatching indicates the state is don't care.

7: When the falling edge of \overline{W} is simultaneous or prior to the falling edge of \overline{S} , the output is maintained in the high impedance. 8: ten,tdis are periodically sampled and are not 100% tested.

