FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Packages include 25 mil pitch SSOP, 19.6 mil pitch TSSOP, 15.7 mil pitch TVSOP and 25 mil pitch Cerpack
- Extended commercial range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Balanced Output Drivers: $\pm 24 \mathrm{~mA}$ (commercial), $\pm 16 \mathrm{~mA}$ (military)
- Reduced system switching noise
- Typical Volp (Output Ground Bounce) < 0.6V at $\mathrm{VcC}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$
- Ideal for new generation x86 write-back cache solutions
- Suitable for modular x86 architectures
- Four deep write FIFO
- Latch in read path
- Synchronous FIFO reset

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

SSOP/
TSSOP/TVSOP
TOP VIEW 2915 drw 02

PIN DESCRIPTION

Pin Names	1/0	Description
A1-18	I/O	18 bit I/O port.
B1-18	I/O	18 bit I/O port.
CLK	I	Clock for write path FIFO. Clocks data into FIFO when $\overline{\text { WCE }}$ is low, clocks data out of FIFO when $\overline{\text { RCE }}$ is low. When FIFO is full all further writes to the FIFO are inhibited. When FIFO is empty all reads from the FIFO are inhibited. CLK also resets the FIFO when RESET is low.
WCE	1	Enable pin for FIFO input clock.
$\overline{\mathrm{RCE}}$	1	Enable pin for FIFO output clock.
$\overline{\text { FF }}$	O	Write path FIFO full flag. Goes low when FIFO is full.
$\overline{\text { RESET }}$	1	Synchronous FIFO reset - when low CLK resets the FIFO. The FIFO pointers are initialized to the "empty" condition and FIFO output is forced high (all ones). The FIFO full flag ($\overline{\mathrm{FF}}$) will be high immediately after reset.
$\overline{\text { OEAB }}$	I	Output Enable pin for B port.
$\overline{O E B A}$	1	Output Enable pin for A port.
LE	I	Read path latch enable pin. When high, data flows transparently from B port to A port, B data is latched on the falling edge of LE.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
VTERM $\left.^{(2)}\right)$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
VTERM ${ }^{(3)}$ (Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXXT Output and I/O terminals.
3. Output and I/O terminals for FCT162XXXT.

CAPACITANCE ($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter(1)	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	3.5	6.0	pF
CI / O	I / O Capacitance	VouT $=0 \mathrm{~V}$	3.5	8.0	pF

NOTE:
2915 Ink 03

1. This parameter is measured at characterization but not tested.

FUNCTIONAL DESCRIPTION:

This device is useful as a read/write buffer for modular high end designs. It provides multi-level buffering in the write path and single deep buffering in the read path, and is suited to write back cache implementation. The read path provides a transparent latch.

The four deep FIFO uses one clock with two clock enable pins, $\overline{\text { WCE }}$ and $\overline{\text { RCE }}$ to clock data in and out. The FIFO has an external full flag which goes LOW when the FIFO is full. Internal read and write pointers keep track of the words stored in the FIFO. A write attempt to a full FIFO is ignored. An attempt to read from an empty FIFO will have no effect and the last read data remains at the output of the FIFO. The FIFO may be reset by the synchronous RESET input. This resets
the read and write pointers to the original "empty" condition and also sets all B outputs $=1$. Simultaneous read and write attempts (clock data into FIFO as well as clock data out of FIFO) are possible except on FIFO empty and full boundaries. When the FIFO is empty, and a simultaneous read and write is attempted, the read is ignored while the write is executed. If the same is attempted when the FIFO is full, the write is ignored while the read is executed. Normal operation of the four deep FIFO in the write path is independent of the read path operation.

Power, ground and data pin positions on the FCT162701T match those on the FCT16501T/162501T, allowing an easy upgrade.

APPLICATIONS: 486 INTERFACE

2915 drw 04

Figure 1. FCT162701T Application Example

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Commercial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$; Military: $\mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2.0	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
IIH	Input HIGH Current (Input pins) ${ }^{(5)}$	Vcc = Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
IIL	Input LOW Current (Input pins) ${ }^{(5)}$		V I = GND	-	-	± 1	
	Input LOW Current (l/O pins) ${ }^{(5)}$			-	-	± 1	
IozH	High Impedance Output Current (3-State Output pins) ${ }^{(5)}$	$\mathrm{Vcc}=$ Max.	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IozL			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VCC}=$ Min., $\mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Ios	Short Circuit Current	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-225	mA
VH	Input Hysteresis	-		-	100	-	mV
$\begin{aligned} & \hline \mathrm{ICCL} \\ & \mathrm{ICCH} \\ & \mathrm{ICCZ} \\ & \hline \end{aligned}$	Quiescent Power Supply Current	Vcc = Max., VIn = GND or Vcc		-	5	500	$\mu \mathrm{A}$

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IODL	Output LOW Current	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or $\mathrm{VIL}, \mathrm{VOUT}=1.5 \mathrm{~V}^{(3)}$		60	115	200	mA
IODH	Output HIGH Current	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or $\mathrm{VIL}, \mathrm{Vout}=1.5 \mathrm{~V}{ }^{(3)}$		-60	-115	-200	mA
VoH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\begin{aligned} & \mathrm{IOH}=-16 \mathrm{~mA} \text { MIL. } \\ & \mathrm{IOH}=-24 \mathrm{~mA} \text { COM'L. } \end{aligned}$	2.4	3.3	-	V
Vol	Output LOW Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or } \mathrm{VIL} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA} \text { MIL. } \\ & \mathrm{IOL}=24 \mathrm{~mA} \text { COM'L. } \end{aligned}$	-	0.3	0.55	V

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. Duration of the condition can not exceed one second.
5. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T} A=-55^{\circ} \mathrm{C}$.

POWER SUPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{ICC}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \\ & \hline \end{aligned}$		-	0.5	1.5	mA
ICCD (CLK)	Dynamic Power Supply Current due to clock switching ${ }^{(4)}$	Vcc = Max. Outputs Open CLK Toggling 50% Duty Cycle One Bit Toggling 50% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	180	240	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
ICCD (O/P)	Dynamic Power Supply Current due to output switching ${ }^{(4)}$			-	80	120	
Ic	Total Power Supply Current ${ }^{(6)}$	Vcc = Max. Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}$ 50\% Duty Cycle $\overline{\mathrm{OEAB}}=\mathrm{GND} ; \overline{\mathrm{OEBA}}=\mathrm{VCc}$ $\mathrm{LE}=\overline{\mathrm{WCE}}=\overline{\mathrm{RCE}}=\mathrm{GND}$ $\overline{\text { RESET }}=\mathrm{Vcc}$ All Inputs Low	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.8	$2.9{ }^{(5)}$	mA
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.1	$3.7{ }^{(5)}$	
		Vcc = Max. Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}$ 50\% Duty Cycle $\overline{\mathrm{OEAB}}=\mathrm{GND} ; \overline{\mathrm{OEBA}}=\mathrm{Vcc}$ LE $=\overline{W C E}=\overline{R C E}=$ GND $\overline{\text { RESET }}=\mathrm{Vcc}$ One Bit Toggling at fo $=5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.2	3.5	
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.7	5.0	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(\mathrm{V} \operatorname{li})=3.4 \mathrm{~V})$. All other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} \mathrm{DHNT}+\mathrm{ICCD}(\mathrm{CLK}) \times \mathrm{fCP}+\mathrm{ICCD}(\mathrm{O} / \mathrm{P}) \times$ fo No
Icc = Quiescent Current (Iccl, Icch and Iccz)
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input (Vin $=3.4 \mathrm{~V}$)
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at D
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
fo = Output Frequency
No = Number of Outputs at fo

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter		Test Conditions ${ }^{(1)}$	FCT162701T		FCT162701AT		Unit	
		Min. ${ }^{(2)}$	Max. ${ }^{(2)}$	Min. ${ }^{(2)}$	Max. ${ }^{(2)}$			
PROPAGATION DELAYS								
1	B1-18 to A 1-18		Read path/latch	1.5	6.5	1.5	5.5	ns
2	LE (Low to Hi) to A 1-18	Read path/latch	1.5	5.7	1.5	4.7	ns	
3	CLK to $\overline{\mathrm{F}} \overline{\mathrm{F}}$	Write path	2	7.0	2	6.0	ns	
4	CLK to B1-18	Write path	1	6.0	1	5.2	ns	
SETUP \& HOLD TIMES ${ }^{(3)}$								
5	A1-18 to CLK (Low to Hi) Setup	Write path	2.5	-	2.5	-	ns	
6	A1-18 to CLK (Low to Hi) Hold	Write path	0	-	0	-	ns	
7	B1-18 to LE (Hi to Low) Setup	Read path/latch	3	-	3	-	ns	
8	B1-18 to LE (Hi to Low) Hold	Read path/latch	0	-	0	-	ns	
9	$\overline{\text { WCE, }} \overline{\mathrm{RCE}}$ (Low) to CLK Setup	Write path	3	-	3	-	ns	
10	$\overline{\text { WCE, }}$, $\overline{\mathrm{C}} \mathrm{E}$ (Low) to CLK Hold	Write path	0	-	0	-	ns	
11	$\overline{\mathrm{RESET}}$ (Low) to CLK Setup	Write path	3	-	3	-	ns	
12	$\overline{\text { RESET }}$ (Low) to CLK Hold	Write path	0	-	0	-	ns	
ENABLE \& DISABLE TIMES ${ }^{(3)}$								
13	$\overline{\text { OEBA }}$ Low to A_{1-18} Enable	Write path	1.5	7.0	1.5	6.0	ns	
14	$\overline{\text { OEBA }}$ High to A 1-18 Disable	Write path	1.5	6.0	1.5	5.0	ns	
15	$\overline{\text { OEAB }}$ Low to B1-18 Enable	Read path	1.5	7.0	1.5	6.0	ns	
16	$\overline{\mathrm{OEAB}}$ High to B1-18 Disable	Read path	1.5	6.0	1.5	5.0	ns	
MINIMUM PULSE WIDTHS								
17	CLK HIGH or LOW Pulse Width	Write path	3.0	-	3.0	-	ns	
18	LE HIGH Pulse Width	Read path/latch	3.0	-	3.0	-	ns	

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. Guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

 TEST CIRCUITS FOR ALL OUTPUTS

2915 drw 04

SET-UP, HOLD AND RELEASE TIMES

PROPAGATION DELAY

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

2915 Ink 07
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

PULSE WIDTH

ENABLE AND DISABLE TIMES

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$

ORDERING INFORMATION

