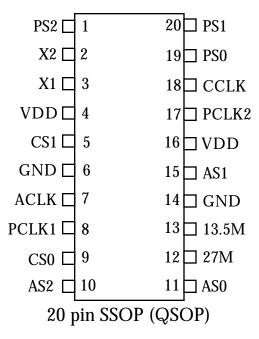


Description

The ICS650-12 is a low cost, low jitter, high performance clock synthesizer designed to produce fixed clock outputs of 13.5 MHz and 27.0 MHz and four selectable clock outputs of two Processor Clocks (PCLK1 and PCLK2), Audio Clock (ACLK), and Communications Clock (CCLK). Using our patented analog Phase-Locked Loop (PLL) techniques, the device uses a 27.0 MHz clock or fundamental crystal input to produce clocks ideal for Digital Video/MPEGbased applications.

Features

- Packaged in 20 pin tiny SSOP (QSOP)
- Input Frequency of 27.0 MHz
- Zero ppm synthesis error in output clocks
- Provides fixed 13.5 MHz and 27.0 MHz. Also provides two selectable Processor Clocks, one Audio Clock, and one Communications Clock
- Ideal for Digital Video/MPEG-based applications
- 3.3 V or 5.0 V operating voltage
- Entire chip powers down (when CS1=CS0=0)



Block Diagram

ICS650-12 MPEG Clock Synthesizer

Pin Assignment

PCLK1 and PCLK2 Select Table (in MHz)

PS2	PS1	PS0	PCLK1	PCLK2
0	0	0	108.00	54.00
0	0	1	55.00	27.5
0	1	0	66.67	33.33
0	1	1	80.00	40.00
1	0	0	54.00	27.00
1	0	1	81.00	40.5
1	1	0	50.00	25.00
1	1	1	60.00	30.00

ACLK Select Table (in MHz)

AS2	AS1	AS0	ACLK
0	0	0	12.288
0	0	1	11.2896
0	1	0	8.192
0	1	1	24.576
1	0	0	8.192
1	0	1	16.9344
1	1	0	18.432
1	1	1	11.2896
		1	

CCLK Select Table (in MHz)

CS1	CS0	CCLK
0	0	All off*
0	1	20.00
1	0	66.6666
1	1	24.576

*Note: Entire chip powers down (outputs stop low) when CS1 = CS0 = 0.

Pin Descriptions

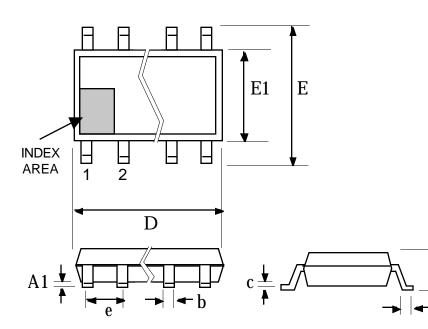
Pin #	Name	Туре	Description		
1	PS2	Ι	Processor Clock Select Pin 2. See above table.		
2	X2	XO	Crystal connection to a 27.0 MHz crystal or leave unconnected for clock input		
3	X1	XI	Crystal connection. Connect to a 27.0 MHz fundamental mode crystal or clock input.		
4, 16	VDD	Р	Connect to +3.3 V or +5.0 V.		
5	CS1	Ι	Communications Clock Select Pin 1. See above table.		
6, 14	GND	Р	Connect to ground.		
7	ACLK	0	Audio Clock Output. See above table.		
8	PCLK1	0	Processor Clock Output 1. See above table.		
9	CS0	Ι	ommunications Clock Select 0. See above table.		
10	AS2	Ι	udio Clock Select Pin 2. See above table.		
11	AS0	Ι	udio Clock Select Pin 0. See above table.		
12	27M	0	27 MHz buffered clock output.		
13	13.5M	0	13.5 MHz clock output.		
15	AS1	Ι	Audio Clock Select Pin 1. See above table.		
17	PCLK2	0	Processor Clock Output 2. See above table.		
18	CCLK	0	Communications Clock Output. See above table.		
19	PS0	Ι	Processor Clock Select Pin 0. See above table.		
20	PS1	I	Prcoessor Clock Select Pin 1. See above table.		

Key: I = Input with internal pull-up; O = output; P = power supply connection; XI, XO = crystal connections

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units
ABSOLUTE MAXIMUM RATINGS (1	note 1)				
Supply voltage, VDD	Referenced to GND			7	V
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V
Ambient Operating Temperature		0		70	°C
Soldering Temperature	Max of 10 seconds			260	°C
Storage temperature		-65		150	°C
DC CHARACTERISTICS (VDD = 3.3	V or 5V unless noted)				
Operating Voltage, VDD		3.0		5.5	V
Input High Voltage, VIH		2			V
Input Low Voltage, VIL				0.8	V
Output High Voltage, VOH	VDD=3.3V, IOH=-8mA	2.4			V
Output Low Voltage, VOL	VDD=3.3V, IOL=8mA			0.4	V
Output High Voltage, VOH, VDD = 3.3 or 5V	IOH=-8mA	VDD-0.4			V
Operating Supply Current, IDD, at 5V	No Load		39		mA
Operating Supply Current, IDD, at 3.3V	No Load		22		mA
Short Circuit Current, VDD = 3.3 V	Each output		±50		mA
Input Capacitance	Except X1		7		pF
AC CHARACTERISTICS (VDD = 3.3	V or 5V unless noted)				
Input Crystal or Clock Frequency			27		MHz
Output Clocks Accuracy (synthesis error)	All clocks		0	1	ppm
Output Clock Rise Time	0.8 to 2.0V			1.5	ns
Output Clock Fall Time	2.0 to 0.8V			1.5	ns
Output Clock Duty Cycle	At VDD/2	40	50	60	%
One Sigma Jitter, ACLK	VDD=3.3 V		100		ps
	VDD=5.0 V		40		ps
Absolute Clock Period Jitter	VDD=3.3 V, Except CCLK=20 MHz		±300		ps
	VDD=5.0 V, Except CCLK=20 MHz		±200		ps

Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.


External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of 0.01 μ F should be connected between VDD and GND on pins 4 and 6, and 16 and 14, and a 33 terminating resistor may be used on each clock output if the trace is longer than 1 inch.

Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC Publication No. 95.)

20 pin S	SSOP
----------	------

	Inch	es	Millimeters		
Symbol	Min	Max	Min	Max	
Α	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
b	0.008	0.012	0.20	0.30	
с	0.007	0.010	0.18	0.25	
D	0.337	0.344	8.55	8.75	
е	.025 BSC		0.635 BSC		
Е	0.228	0.244	5.80	6.20	
E1	0.150	0.157	3.80	4.00	
L	0.016	0.050	0.40	1.27	

Ordering Information

Part/Order Number	Marking	Package	Shipping	Temperature
ICS650R-12	ICS650R-12	20 pin SSOP	Tubes	0 to 70 °C
ICS650R-12T	ICS650R-12	20 pin SSOP	Tape and Reel	0 to 70 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.