IC S580-01
G litch-Free C lock M ultiplexer

D escription

The IC 5580-01 is a clock multiplexer (mux) designed to switch between 2 clock sources with no glitches or short pulses. The operation of the mux is controlled by an input pin but the part can also be configured to switch automatically if one of the input clocks stops. The part also provides clock detection by reporting when an input clock has stopped.

For a clock mux with zero delay and smooth switching, see either the IC S581-01 or IC S581-02.

Features

- Packaged in 16 pin narrow (150 mil) SOIC
- No short pulses or glitches on output
- O perates to 200 M Hz
- D oes not add jitter or phase noise to the clock
- U ser controlled or automatic switching
- Low skew outputs
- Clock detect feature
- Ideal for systems with backup or redundant clocks
- Selectable timeouts for clock detection
- Separate supply voltages allow power supply voltage translation
- O perates to 2.5 V

Block D iagram

Pin Assignment

SELB ${ }^{1} \bigcirc$	16	OE1
DIV -2	15	$\square \mathrm{VDDC}$
VDDI C 3	14	\square CLK1
INA - 4 -	13	\square CLK2
INB - 5	12	$\square \mathrm{NO}$ _INA
GND ¢ $6=$	11	$\square \mathrm{NO}$-INB
OE4 - 7	10	G ND
OE3 ¢ 8	9	\square OE2

Timeout Selection

DIV	N ominal Timeout
0	600 ns
1	75 ns

Pin D escriptions

Number	N ame	Type	D escription
1	SELB	1	M ux select. Selects IN B when high. Internal pull-up.
2	DIV	I	Time out select. Seetable above. Internal pull-up.
3	VDDI	P	Supply for input clocks only. Can be higher than VDDC.
4	INA	I	Input Clock A.
5	INB	1	Input Clock B.
6	GND	P	Connect to ground.
7	OE4	I	O utput Enable. Tri-states N O_IN B when Iow. Internal pull-up.
8	0 E3	I	O utput Enable Tri-states N 0 IN A when low. Internal pull-up.
9	OE2	I	O utput enable. Tri-states CLK2 when low. Internal pull-up.
10	GND	P	Connect to ground.
11	NO INB	0	Goes high when clock on IN B stops.
12	NO INA	0	Goes high when clock on IN A stops.
13	CLK2	0	Clock 20 utput. Low skew compared to CLK1.
14	CLK1	0	Clock 10 utput. Low skew compared to CLK2.
15	VDDC	P	M ain chip supply. O utput clocks amplitude will match this VDD.
16	0 E1	I	0 utput Enable. Tri-states CLK1 when low. Internal pull-up.

Key: I = Input; 0 =output; $P=$ power supply connection

IC 5580-01 G litch-Free C lock M ultiplexer

D evice \mathbf{O} peration and Applications

The ICS580-01 consists of a glitch free mux between IN A and IN B controlled by SELB. The device is designed to switch between 2 clocks, whether running or not. In the first example, clocks are running on both IN A and IN B. When SELB changes, the output clock goes low after 3 cycles of the output clock (nominally). The output then stays low for 3 cycles of the new input clock (nominally) and then starts with the new input clock. This is shown in Figure 1.

Figure 1

In the second example, one of the inputs was selected and running but has since stopped (either high or low). This is indicated by either NO_INA or NO_IN B going high depending on whether IN A or IN B has stopped. These signals go high following a selectable time-out period after the clock has stopped. The timeout period is determined by the DIV input pin. The SELB pin is now changed to select the new input clock which is running. The output clock immediately goes low and stays low for 3 cycles of the new input clock and then starts with the new input clock. Figure 2 shows an example of this.

Figure 2

IC S580-01 G litch-Free C lock M ultiplexer

In the third example, the ICS580-01 is configured to automatically switch clocks when an an input stops. The clock that could stop is connected to IN A while the backup, always running, clock is connected to IN B. The output NO_IN A is connected to SELB. This means that when the clock on IN A stops, N O_IN A goes high selecting the clock on IN B which is muxed to the output after 3 cycles. When the clock on IN A restarts, NO IN A immediately goes low, selecting the clock on IN A. The output then switches in the manner described in the first example.
The circuit diagram in Figure 3 shows a typical connection for this example. N ote that CLK 2 and N O_IN B are unused and so are disabled by grounding OE2 and OE4. A 33Ω series termination resistor is used on the clock output and 2 decoupling capacitors of $0.01 \mu \mathrm{~F}$ are used. All other inputs are left floating and are therefore pulled high by the on-chip pull-ups.

Figure 3

O utput Enable

Each output has a dedicated output enable pin. If an output is unused, it should be tri-stated by tying the appropriate output enable pin to ground.

External C omponents

The ICS580-01 requires two $0.01 \mu \mathrm{~F}$ decoupling capacitors, one between VDDI and GND and one between VDDC and GND. Series termination resistors of 33Ω can be used on CLK1 and CLK 2 .

Split Power Supplies

The VDDI pin provides the power for the IN A and IN B input buffers only. All the other inputs and the rest of the chip are connected to VDDC. This allows for supply voltage translation. For example, INA and IN B could be 5 V clocks (VDDI $=5 \mathrm{~V}$) and the rest of the chip could use a 3.3 V supply on VDDC giving 3.3 V output clocks. For correct operation VD DI must always be greater than or equal to VDDC.

IC 5580-01
G litch-Free C lock M ultiplexer

Electrical Specifications

Parameter	C onditions	M inimum	Typical	M aximum	U nits
ABSOLUTE M AXIM UM RATINGS					
Supply voltage, VDD	Referenced to GND			7	V
Inputs and Clock O utputs	Referenced to GND	-0.5		VDD +0.5	V
Ambient O perating T emperature		0		70	${ }^{\circ} \mathrm{C}$
Ambient O perating T emperature, I version	Industrial temperature	-40		85	${ }^{\circ} \mathrm{C}$
Soldering T emperature	M ax of 10 seconds			260	${ }^{\circ} \mathrm{C}$
Storage temperature		-65		150	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS (VDDC = V D I = 3.3 V unless noted)					
0 perating Voltage, VDDC		2.5		5.5	V
O perating V oltage, VDDI		VDDC		5.5	V
Input High Voltage, VIH, note 3	IN A and IN B only	(VDDC/2)+1	VDDC/2	VDDI	V
Input Low Voltage, VIL, note 3	IN A and IN B only		VDDC/2	(VDDC/2)-1	V
Input High Voltage, VIH	Non-clock inputs	2		VDDC	V
Input Low Voltage, VIL	Non-clock inputs			0.8	V
O utput H igh Voltage, V OH	$10 \mathrm{H}=12 \mathrm{~mA}$	VDDC-0.5			V
O utput Low Voltage, VOL	$10 \mathrm{~L}=12 \mathrm{~mA}$			0.5	V
O perating Supply Current, ID D	50 M Hz inputs, no load		6		mA
Short Circuit Current			± 70		mA
On-chip pull-up resistor, non-clock inputs	Pull-up to VDDC		250		$\mathrm{k} \Omega$
Input Capacitance			4		pF

AC C H ARACTERISTICS (VD DC = VDDI $=3.3 \mathrm{~V}$ unless noted)

Input Frequency, IN A and IN B. N ote 1.	VDDC $=5 \mathrm{~V}$	1/timeout		270	M Hz
	VDDC $=3.3 \mathrm{~V}$	1/timeout		220	M Hz
	VDDC $=2.7 \mathrm{~V}$	1/timeout		180	M Hz
Propagation Delay, IN A or IN B to output	VDDC $=5 \mathrm{~V}$		4	8	ns
	VDDC $=3.3 \mathrm{~V}$		5	10	ns
	VDDC $=2.7 \mathrm{~V}$		6	12	ns
T ransition D etector Timeout, DIV $=0$	$\mathrm{VDDI}=5 \mathrm{~V}$	175	350	700	ns
	VDDI $=3.3 \mathrm{~V}$	500	1000	2000	ns
	VDDI $=2.7 \mathrm{~V}$	750	1500	3000	ns
T ransition D etector Timeout, DIV =1	$\mathrm{VDDI}=5 \mathrm{~V}$	20	40	80	ns
	VDDI $=3.3 \mathrm{~V}$	55	110	210	ns
	$\mathrm{VDDI}=2.7 \mathrm{~V}$	100	200	400	ns
O utput Clock Rise Time				1.5	ns
O utput Clock Fall Time				1.5	ns
0 utput Clock Skew, CLK1 to CLK2	N ote 2	-250	0	250	ps

N ote 1. Frequencies less than the minimum may cause a timeout, which will not guarantee glitch-free switching unless the clock is actually stopped.
N ote 2. Assumes identically loaded outputs with identical rise times, measured at VDD/2.
N ote 3. O utput duty cycle is set by duty cycle of input clock at VD DC/2.

IC S580-01 G litch-Free C lock M ultiplexer

Package 0 utline and Package D imensions

(For current dimensional specifications, see JED EC publication no. 95.)
16 pin SO IC narrow

	Inches		M illimeters	
Symbol	M in	M ax	M in	M ax
A	0.059	0.069	1.50	1.75
A1	0.004	0.0098	0.10	0.25
B	0.013	0.020	0.33	0.51
C	0.007	0.0098	0.19	0.25
D	0.386	0.394	9.80	10.00
E	0.150	0.157	3.80	4.00
E	.050 BSC	1.27 BSC		
H	0.228	0.244	5.80	
L	0.016	0.05	6.20	

O rdering Information

Part/O rder N umber	M arking	Package	Temperature
IC S580M -01	IC S580M -01	16 pin SOIC	0 to $70^{\circ} \mathrm{C}$
ICS580M -01T	ICS580M -01	16 pin SOIC on tape and reel	0 to $70^{\circ} \mathrm{C}$
IC S580M -01I	ICS580M -01I	16 pin SOIC	-40 to $85^{\circ} \mathrm{C}$
IC S580M -01IT	ICS580M -01I	16 pin SOIC on tape and reel	-40 to $85^{\circ} \mathrm{C}$

[^0]
[^0]: While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. Noother circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

