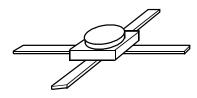


0.5–10 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-25170

Features


- Low Noise Figure: 0.8 dB Typical at 4 GHz
- High Associated Gain: 14.0 dBTypical at 4 GHz
- **High Output Power:** 21.0 dBm Typical P_{1dB} at 4 GHz
- Hermetic Gold-Ceramic Microstrip Package

Description

The ATF-25170 is a high performance gallium arsenide Schottkybarrier-gate field effect transistor housed in a hermetic, high reliability package. Its noise figure makes this device appropriate for use in low noise amplifiers operating in the 0.5-10 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

70 mil Package

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 3 V$, $I_{DS} = 20 mA$	f = 4.0 GHz f = 6.0 GHz f = 8.0 GHz	dB dB dB		0.8 1.0 1.2	1.0
G _A	Gain @ NF ₀ : $V_{DS} = 3 V$, $I_{DS} = 20 mA$	$\begin{array}{l} f=4.0\mathrm{GHz}\\ f=6.0\mathrm{GHz}\\ f=8.0\mathrm{GHz} \end{array}$	dB dB dB	13.0	14.0 11.5 9.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression: $V_{DS} = 5 V, I_{DS} = 50 mA$	f = 4.0 GHz	dBm		21.0	
G_{1dB}	1 dB Compressed Gain: $V_{\rm DS}$ =5 V, $I_{\rm DS}$ =50 mA	$\rm f{=}4.0\rm GHz$	dB		15.0	
g _m	Transconductance: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mmho	50	80	
I _{DSS}	Saturated Drain Current: $V_{\rm DS}$ =3 V, $V_{\rm GS}$ = 0 V		mA	50	100	150
V _P	Pinch-off Voltage: $V_{DS} = 3 V$, $I_{DS} = 1 mA$		V	-3.0	-2.0	-0.8

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{DS}	Drain-Source Voltage	V	+7
V_{GS}	Gate-Source Voltage	V	-4
V_{GD}	Gate-Drain Voltage	V	-8
$I_{\rm DS}$	Drain Current	mA	I _{DSS}
P _T	Power Dissipation ^[2,3]	mW	450
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature	°C	-65to+175

ATF-25170 Absolute Maximum Ratings

Thermal Resistance: $\theta_{jc} = 300^{\circ}C/W; T_{CH} = 150^{\circ}C$ Liquid Crystal Measurement:1 μ m Spot Size^[4]

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{\text{MOUNTING SURFACE}} = 25 \,^{\circ}\text{C}.$
- 3. Derate at 3.3 mW/°C for $T_{MOUNTING SURFACE} > 40$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-25170 Noise Parameters: $V_{DS} = 3 V$, $I_{DS} = 20 mA$

Freq.	NFo	Γ	R_N/50		
GHz	dB	Mag	Ang	μ _N /30	
1.0	0.6	.89	24	.78	
2.0	0.7	.77	50	.53	
4.0	0.8	.63	105	.33	
6.0	1.0	.66	147	.06	
8.0	1.2	.62	-159	.11	

ATF-25170 Typical Performance, $T_A = 25^{\circ}C$

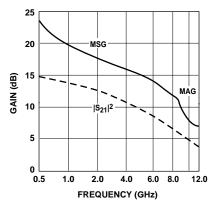


Figure 1. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=3\ V,\ I_{DS}=20\ mA.$

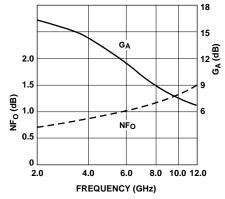
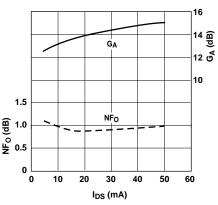
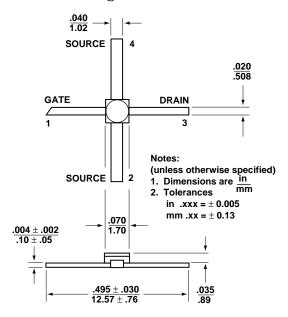


Figure 2. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS} = 3V$, $I_{DS} = 20$ mA.




Figure 3. Optimum Noise Figure and Associated Gain vs. $I_{DS}.$ V_{DS} = 3V, f = 4.0 GHz.

Freq.	S ₁₁		S ₂₁			\mathbf{S}_{12}			\mathbf{S}_{22}	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-23	13.6	4.80	160	-32.8	.023	76	.50	-23
1.0	.96	-38	13.0	4.46	147	-23.6	.037	67	.48	-30
2.0	.88	-66	11.5	3.75	121	-23.6	.066	50	.44	-45
3.0	.80	-86	10.2	3.23	102	-21.8	.081	41	.41	-55
4.0	.77	-106	9.3	2.93	82	-19.7	.103	28	.38	-65
5.0	.71	-127	8.5	2.66	62	-18.6	.118	17	.35	-78
6.0	.65	-149	7.9	2.47	42	-17.7	.130	6	.30	-93
7.0	.60	-173	7.3	2.33	24	-16.5	.149	-4	.26	-111
8.0	.56	161	6.8	2.20	5	-15.8	.162	-16	.22	-134
9.0	.56	136	6.2	2.05	-14	-15.1	.175	-26	.21	-166
10.0	.55	118	5.4	1.87	-31	-15.0	.178	-35	.21	173
11.0	.53	108	4.9	1.76	-46	-14.9	.180	-42	.22	164
12.0	.53	95	4.7	1.71	-62	-14.8	.183	-52	.23	159

Typical Scattering Parameters, Common Emitter, $Z_0 = 50 \Omega$, $T_A = 25$ °C, $V_{DS} = 3$ V, $I_{DS} = 20$ mA

A model for this device is available in the DEVICE MODELS section.

70 mil Package Dimensions

