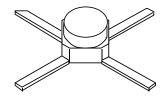


0.5–10 GHz General Purpose Gallium Arsenide FET

Technical Data

ATF-25735

Features


- **High Output Power:** 19.0 Bm Typical P_{1 dB} at 4 GHz
- **High Gain:** 12.5 dB Typical G _{1 dB} at 4 GHz
- Low Noise Figure: 1.2 dB Typical at 4 GHz
- Cost Effective Ceramic Microstrip Package

Description

The ATF-25735 is a high performance gallium arsenide Schottkybarrier-gate field effect transistor housed in a cost effective microstrip package. This device is designed for use in general purpose amplifier and oscillator applications in the 0.5-10 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

35 micro-X Package

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 3 V$, $I_{DS} = 20 mA$	f = 2.0 GHz f = 4.0 GHz f = 6.0 GHz	dB		1.0 1.2 1.4	1.5
G_A	Gain @ NF ₀ : $V_{DS} = 3 V$, $I_{DS} = 20 mA$	f = 2.0 GHz f = 4.0 GHz f = .6.0 GHz	dB	11.5	15.0 13.0 10.5	
P _{1 dB}	Power Output @ 1 dB Gain Compression: $V_{DS} = 5 V, I_{DS} = 50 mA$	$f = 4.0 \mathrm{GHz}$	dBm		19.0	
G_{1dB}	1 dB Compressed Gain: $V_{\rm DS}$ = 5 V, $I_{\rm DS}$ =50 mA	$f{=}4.0\mathrm{GHz}$	dB		12.5	
g _m	Transconductance: $V_{DS} = 3 V, V_{GS} = 0 V$		mmho	50	80	
I _{DSS}	Saturated Drain Current: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mA	50	100	150
V _P	Pinch-off Voltage: $V_{DS} = 3 \text{ V}, I_{DS} = 1 \text{ mA}$		V	-3.0	-2.0	-0.8

Electrical Specifications, $T_{\rm A}$ = 25 $^\circ {\rm C}$

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{DS}	Drain-Source Voltage	V	+7
V _{GS}	Gate-Source Voltage	V	-4
V _{GD}	Gate-Drain Voltage	V	-8
I _{DS}	Drain Current	mA	I _{DSS}
P _T	Power Dissipation ^[2,3]	mW	450
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature ^[4]	°C	-65to+175

ATF-25735 Absolute Maximum Ratings

Thermal Resistance: $\theta_{jc} = 325^{\circ}C/W; T_{CH} = 150^{\circ}C$ Liquid Crystal Measurement: $1 \ \mu m \operatorname{Spot Size}^{[5]}$

ATF-25735 Typical Performance, $T_A = 25^{\circ}C$

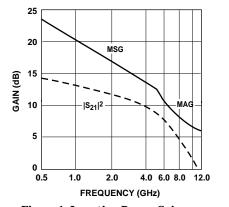


Figure 1. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=3$ V, $I_{DS}=20$ mA.

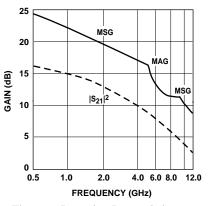
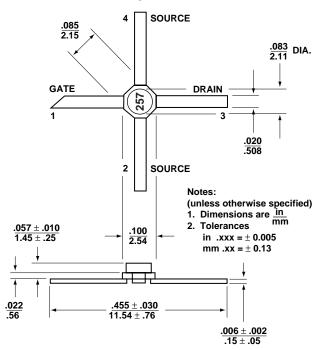


Figure 2. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS} = 5$ V, $I_{DS} = 50$ mA.

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE TEMPERATURE} = 25$ °C.
- 3. Derate at 3 mW/°C for $T_{CASE} > 29$ °C.
- 4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.


Freq.	S	11	S ₂₁		S ₁₂			S ₂₂		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-22	13.9	4.95	159	-32.0	.025	77	.52	-12
1.0	.94	-45	13.3	4.61	142	-27.1	.044	64	.52	-20
2.0	.85	-82	12.2	4.06	110	-21.6	.083	45	.46	-41
3.0	.70	-116	11.0	3.54	81	-19.3	.109	24	.38	-61
4.0	.58	-152	10.0	3.17	54	-17.7	.131	12	.35	-81
5.0	.50	165	8.9	2.78	27	-16.7	.146	-7	.29	-97
6.0	.52	122	7.7	2.43	1	-16.1	.156	-20	.18	-112
7.0	.59	90	6.3	2.06	-23	-15.8	.162	-34	.07	-161
8.0	.65	66	5.1	1.79	-43	-15.5	.167	-46	.09	107
9.0	.69	44	3.8	1.55	-63	-15.3	.172	-53	.15	76
10.0	.73	32	2.7	1.36	-82	-15.4	.170	-65	.18	53
11.0	.79	20	1.1	1.14	-100	-15.5	.168	-78	.21	24
12.0	.84	7	-0.2	.98	-119	-15.7	.161	-93	.26	-5

Typical Scattering Parameters, Common Emitter, $Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{DS} = 3 V$, $I_{DS} = 20 \text{ mA}$

Typical Scattering Parameters, Common Emitter, $Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{DS} = 5 V$, $I_{DS} = 50 mA$

Freq.	S ₁₁		S ₂₁			S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.93	-21	16.0	6.29	156	-34.0	.020	69	.56	-10
1.0	.88	-42	15.4	5.89	140	-29.6	.033	62	.53	-21
2.0	.78	-81	14.1	5.08	108	-24.4	.060	49	.47	-43
3.0	.65	-112	12.6	4.27	83	-22.6	.074	39	.44	-55
4.0	.55	-142	11.4	3.73	58	-21.0	.089	28	.41	-64
5.0	.48	-176	10.6	3.37	36	-19.7	.104	20	.37	-69
6.0	.47	142	9.7	3.04	10	-18.3	.122	6	.28	-83
7.0	.56	104	8.4	2.64	-14	-17.5	.134	-6	.14	-105
8.0	.65	80	7.0	2.25	-35	-16.7	.146	-17	.07	172
9.0	.73	61	5.8	1.94	-53	-16.1	.157	-26	.14	113
10.0	.78	47	4.7	1.71	-72	-15.4	.169	-40	.20	94
11.0	.80	34	3.6	1.51	-90	-15.1	.176	-53	.27	68
12.0	.85	18	2.7	1.36	-109	-14.8	.181	-64	.36	45

A model for this device is available in the DEVICE MODELS section.

35 micro-X Package Dimensions