6A05G THRU 6A10G
GLASS PASSIVATED JUNCTION RECTIFIER
Reverse Voltage－ 50 to 1000 Volts
Forward Current－6．0 Amperes

## Features

－High surge current capability
－Plastic package has Underwriters Laboratory Flammability classification 94V－0 utilizing Flame retardant epoxy molding compound
－Glass passivated junction in R－6 package
－High current operation 6.0 ampere＠ $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$

## R－6



| DIMENSIONS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | inches |  | mm |  | Note |
|  | Min． | Max． | Min． | Max． |  |
| A | 0.339 | 0.358 | 8.6 | 9.1 |  |
| B | 0.339 | 0.358 | 8.6 | 9.1 | 中 |
| C | 0.047 | 0.052 | 1.2 | 1.3 |  |
| D | 1.000 | - | 25.40 | - |  |

## Maximum Ratings and Electrical Characteristics

＊＠$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified．Single phase，half－wave， 60 Hz ，resistive or inductive load．

|  | Symbols | 6A05G | 6A1G | 6A2G | 6A4G | 6A6G | 6A8G | 6A10G | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum repetitive peak reverse voltage | $V_{\text {RRM }}$ | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | Volts |
| Maximum RMS voltage | $V_{\text {RMS }}$ | 35 | 70 | 140 | 280 | 420 | 560 | 700 | Volts |
| Maximum DC blocking voltage | $V_{D C}$ | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | Volts |
| Maximum average forward rectified current at $75^{\circ} \mathrm{C}$ | $\mathrm{I}_{\text {（AV）}}$ | 6.0 |  |  |  |  |  |  | Amps |
| Maximum overload surge current at 1 cycle（Note 1） | $\mathrm{I}_{\text {FSM }}$ | 400.0 |  |  |  |  |  |  | Amps |
| Maximum forward voltage at 6．0A DC | $V_{F}$ | 1.0 |  |  |  |  |  |  | Volt |
| Maximum full load reverse current，full cycle average at $25^{\circ} \mathrm{C}$ | $I_{R}$ | 10 |  |  |  |  |  |  | $\mu \mathrm{A}$ |
| Maximum DC reverse current at rated DC blocking voltage and $100^{\circ} \mathrm{C}$ | $I_{R}$ | 500 |  |  |  |  |  |  | $\mu \mathrm{A}$ |
| Typical junction capacitance（Note 2） | C | 150.0 |  |  |  |  |  |  | $\rho \mathrm{F}$ |
| Typical thermal resistance（Note 3） |  | $\begin{gathered} 20.0 \\ 4.0 \end{gathered}$ |  |  |  |  |  |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating temperature range | $\mathrm{T}_{\mathrm{J}}$ | -55 to +150 |  |  |  |  |  |  | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range | $\mathrm{T}_{\text {STG }}$ | -55 to +175 |  |  |  |  |  |  | ${ }^{\circ} \mathrm{C}$ |

Notes：
（1）Peak forward surge current，per 8.3 ms single half sine－wave superimposed on rated load
（2）Measured at 1.0 MHz and applied reverse voltage of 4.0 volts
（3）Thermal resistance from junction to ambient and from junction to lead at $0.375^{\prime \prime}$（ 9.5 mm ）lead length P．C．B．mounted with 1．1X1．1＂（30X30mm）copper pads

## RATINGS AND CHARACTERISTIC CURVES



PERCENT OF RATED PEAK REVERSE VOLTAGE

Fig. 1 - TYPICAL REVERSE CHARACTERISTICS


NOTE: WHEN PLOTTING CAPACITANCE VERSUS VOLTAGE IT IS CONVENIENT TO PLOT ON LOG-LOG PAPER AND TO PLOT APPLIED VOLTAGE PLUS BARRIER POTENTIAL (BARRIER POTENTIAL - 0.7 VOLTS) AS THE ABSCISCA. THIS WILL GIVE A STRAIGHT LINE OF SLOPE APPROXINATELY $1 / 2$ OF WHICH CAN BE
EERO APPLIED VOLTS IS FOUND AT OT ON THE PLOG. THIS TECHNIOUE WAS USED for the curve shown.

Fig. 3-CAPACITANCE CHARACTERISTICS


Fig. 2-FORWARD DERATING CURVE


Fig. 4-TYPICAL FORWARD CHARACTERISTICS


Fig. 5-MAXIMUM OVERLOAD SURGE CURRENT

