

6A05G THRU 6A10G

GLASS PASSIVATED JUNCTION RECTIFIER
Reverse Voltage - 50 to 1000 Volts
Forward Current - 6.0 Amperes

Features

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability classification 94V-0 utilizing Flame retardant epoxy molding compound
- Glass passivated junction in R-6 package
- High current operation 6.0 ampere @ T_A=75 °C

<u>R-6</u>

Mechanical Data

• Case: Molded plastic, R-6

 Terminals: Axial leads, solderable per MIL-STD-202, method 208

• Polarity: Color band denotes cathode

Mounting Position: Any

• Weight: 0.074 ounce, 2.105 grams

DIMENSIONS											
DIM	inches		m	Note							
	Min.	Max.	Min.	Max.	Note						
Α	0.339	0.358	8.6	9.1							
В	0.339	0.358	8.6	9.1	ф						
С	0.047	0.052	1.2	1.3	ф						
D	1.000	-	25.40	-							

Maximum Ratings and Electrical Characteristics

* @T_△=25°C unless otherwise specified. Single phase, half-wave, 60Hz, resistive or inductive load.

	Symbols	6A05G	6A1G	6A2G	6A4G	6A6G	6A8G	6A10G	Units
Maximum repetitive peak reverse voltage	V _{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS voltage	V _{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC blocking voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum average forward rectified current at 75 $^{\circ}\mathrm{C}$	I _(AV)	6.0							Amps
Maximum overload surge current at 1 cycle (Note 1)	mum overload surge current at 1 cycle (Note 1) I _{FSM} 400.0								Amps
Maximum forward voltage at 6.0A DC	V _F	1.0							Volt
Maximum full load reverse current, full cycle average at $25^\circ\!\mathrm{C}$	I _R	10							μА
Maximum DC reverse current at rated DC blocking voltage and 100 $^{\circ}\mathrm{C}$	I _R	500							μА
Typical junction capacitance (Note 2)	C _J	150.0							ρF
Typical thermal resistance (Note 3)	R _{⊕JA} R _{⊕JL}	20.0 4.0							°C/W
Operating temperature range	T _J	-55 to +150						°C	
Storage temperature range	T _{STG}	-55 to +175						$^{\circ}$ C	

Notes:

- $(1) \, \text{Peak forward surge current}, \, \text{per 8.3 ms single half sine-wave superimposed on rated load} \\$
- (2) Measured at 1.0MHz and applied reverse voltage of 4.0 volts
- (3) Thermal resistance from junction to ambient and from junction to lead at 0.375" (9.5mm) lead length P.C.B. mounted with 1.1X1.1" (30X30mm) copper pads

RATINGS AND CHARACTERISTIC CURVES

PERCENT OF RATED PEAK REVERSE VOLTAGE

Fig. 1-TYPICAL REVERSE CHARACTERISTICS

NOTE: WHEN PLOTTING CAPACITANCE VERSUS VOLTAGE.
IT IS CONVENIENT TO PLOT ON LOG-LOG PAPER
AND TO PLOT APPLIED VOLTAGE PLUS BARRIER
POTENTIAL (BARRIER POTENTIAL - 0,7 VOLTS), AS
THE ABSCISCA. THIS WILL GIVE A STRAIGHT LINE
OF SLOPE APPROXIMATELY 1/2 OF WHICH CAN BE
EASILY EXTRAPOLATED. CAPACITANCE AT
ZERO APPLIED VOLTS IS FOUND AT 0,7 VOLTS
ON THE PLOG. THIS TECHNIQUE WAS USED
FOR THE CURVE SHOWN.

Fig. 3 - CAPACITANCE CHARACTERISTICS

Fig. 2 - FORWARD DERATING CURVE

Fig. 4-TYPICAL FORWARD CHARACTERISTICS

Fig. 5 - MAXIMUM OVERLOAD SURGE CURRENT