

LC550 DATA SHEET

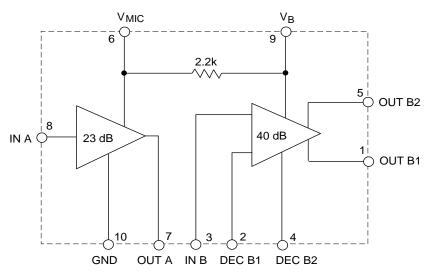
FEATURES

- 23 dB class A preamp & 40 dB class B output stage
- 1.0 V DC to 1.7 V DC operating range
- 2.2 $\mbox{k}\Omega$ on chip microphone decoupling resistor
- 350 µA typical quiescent current
- 400 Hz to 20 kHz frequency response

STANDARD PACKAGING

- 10 pin MICROpac
- 10 pin MINIpac
- 10 pin SLT
- 10 pin PLID ®
- Chip (57 x 47 mils)

 Au Bump


DESCRIPTION

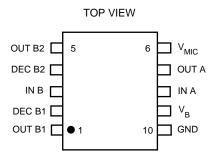
The LC550 is a low voltage linear monolithic integrated circuit amplifier. It is comprised of two separate amplifiers on a single chip. The first is a 23 dB Class A preamp followed by a 40 dB Class B output stage.

Both stages incorporate negative feedback to control gain, minimize distortion and stabilize operation at very low quiescent currents.

The preamp and output stage have their inputs and outputs separately pinned out. This is an advantage as it allows access to both stages, providing the designer with flexibility and a full range volume control.

The combination of low quiescent current and a medium power push-pull output makes the LC550 suitable for medium power BTE hearing aids and for high power ITE aids where efficiency and battery life are a premium consideration.

All resistors in ohms, all capacitors in μF unless otherwise stated U.S. Patent No. 4,085,382, patented in other countries.


BLOCK DIAGRAM

Revision Date: December 1994 Document No. 500 - 37 - 8

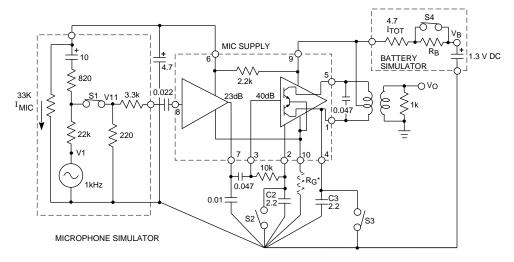
ABSOLUTE MAXIMUM RATINGS

PARAMETER VALUE/UNIT			
Supply Voltage	3 V		
Power Dissipation	60 mW		
Operating Temperature Range	-10° C to 60° C		
Storage Temperature Range	-20° C to 70° C		
CAUTION CLASS 1 ESD SENSITIVITY	P.		

PIN CONNECTION

ELECTRICAL CHARACTERISTICS

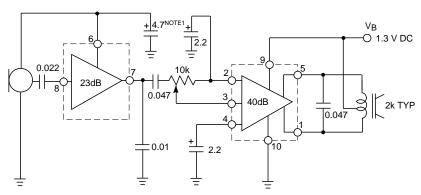
All switches remain as shown in Test Circuit


Conditions: Supply voltage $V_B = 1.3 \text{ V DC}$, Temperature ambient = 25°C, Ground line resistance 0.03 Ω max., Volume control setting max. gain

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain	Av	Output Level 0.707 VRMS	59	63	67	dB
Total Current (including I _{MIC})	I_{TOT}	S1 - open	-	350	475	μΑ
Input Referred Noise	IRN	NFB 0.2 to 10kHz at 12dB/Oct	-	1.5	3	μ٧
Total Harmonic Distortion	THD	Output Level 0.707 VRMS	-	3.5	7.5	%
O/P Swing at 7% Distortion			-	1.4	-	VRMS
Stable with Battery Resistance to:		S4 - open	-	-	60	Ω
Preamp O/P Impedance			-	1.1	-	kΩ
Preamp I/P Impedance			-	30	-	kΩ
O/P Stage O/P Impedance			-	110	-	Ω
O/P Stage I/P Impedance			18	27	34	kΩ
Start-Up Time		Refer to start up test sequence	-	-	3	sec

START-UP TEST SEQUENCE

SEQUENCE	CONDITIONS	COMMENT		
Power Supply	Off			
S1	Open	Removes V _{IN}		
S2 / S3	Closed	Discharges C2 & C3		
S1	Closed	Applies V _{IN} (V _{IN} level is determined from Gain Test)		
S2 / S3	Open	Removes Short from C2 and C3		
Power Supply	On			
Gain must be within specification, within 3 seconds after Power Supply is turned on				


500 - 37 - 8

NOTES: 1. 42.13 dB of attenuation from V1 to V11

2 $\,^{\star}$ RG (equivalent gnd resistance) should not exceed 30 m Ω (increasing RG increases distortion) All resistors in ohms, all capacitors in μF unless otherwise stated.

Fig. 1 Test Circuit

NOTE: 1. 2.2 μF when receiver is $\geq 3k\Omega$ All resistors in ohms, all capacitors in μF unless otherwise stated.

Fig. 2 Typical Hearing Aid Application

All resistors in ohms, all capacitors in μF unless otherwise stated. U.S. Patent No. 4,085,382, patented in other countries.

Fig.3 Functional Schematic

3

500 - 37 - 8

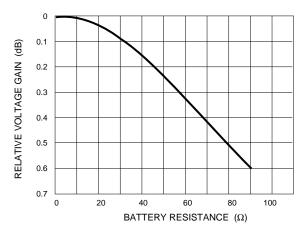
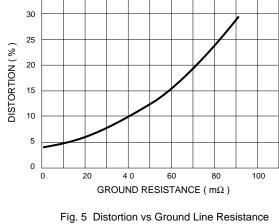



Fig. 4 Gain vs Battery Resistance

35

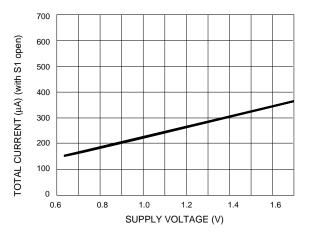


Fig. 6 Total Current vs Supply Voltage

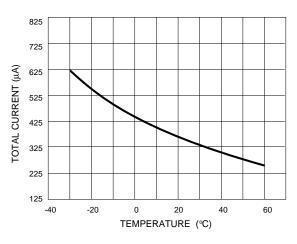


Fig. 7 Total Current vs Temperature

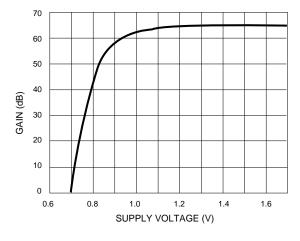


Fig. 8 Gain vs Supply Voltage

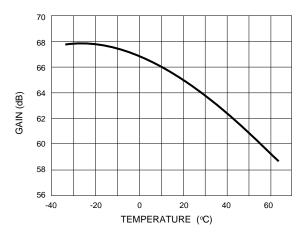


Fig. 9 Gain vs Temperature

500 - 37 - 8 4

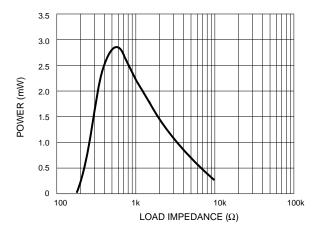


Fig. 10 Power Output vs Load Impedance at 7% Distortion

Fig. 11 Voltage Gain vs Frequency

DOCUMENT IDENTIFICATION

PRODUCT PROPOSAL

This data has been compiled for market investigation purposes only, and does not constitute an offer for sale.

ADVANCE INFORMATION NOTE

This product is in development phase and specifications are subject to change without notice. Gennum reserves the right to remove the product at any time. Listing the product does not constitute an offer for sale.

PRELIMINARY DATA SHEET
The product is in a preproduction phase and specifications are subject to change without notice.

DATA SHEET

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.

Correction to Fig. 1 Pb/Sn Bump removed