

March 1999 Revised March 1999

74LVT573 • 74LVTH573 Low Voltage Octal Transparent Latch with 3-STATE Outputs

General Description

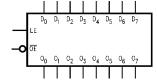
The LVT573 and LVTH573 consist of eight latches with 3-STATE outputs for bus organized system applications. The latches appear transparent to the data when Latch Enable (LE) is HIGH. When LE is low, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable ($\overline{\text{OE}}$) is LOW. When $\overline{\text{OE}}$ is HIGH, the bus output is in the high impedance state.

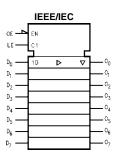
The LVTH573 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These octal latches are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT573 and LVTH573 are fabricated with an advanced BiCMOS technology to

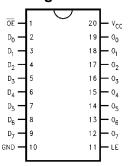
achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features


- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH573), also available without bushold feature (74LVT573).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 573
- Latch-up performance exceeds 500 mA


Ordering Code:

Order Number	Package Number	Package Description
74LVT573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVT573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVT573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVT573MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVTH573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH573MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

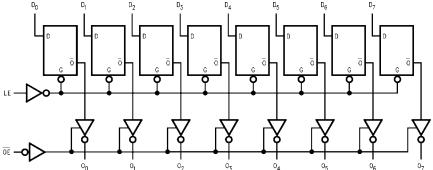
Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-STATE Latch Outputs

Truth Table


		Outputs		
LE		OE	D _n	O _n
Х		Н	Х	Z
Н		L	L	L
Н		L	Н	Н
L		L	Х	O ₀

H = HIGH Voltage Level

Functional Description

The LVT573 and LVTH573 contain eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW, the latches store the information that was present on the D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = LOW Voltage Level

Z = High Impedance

X = Immaterial

 O_0 = Previous O_0 before HIGH to LOW transition of Latch Enable

Absolute Maximum Ratings(Note 1) Parameter Value Units Symbol Conditions Supply Voltage ٧ -0.5 to +4.6 V_{CC} -0.5 to +7.0 ٧ V_{I} DC Input Voltage DC Output Voltage Output in 3-STATE ٧o -0.5 to +7.0 ٧ -0.5 to +7.0 Output in High or Low State (Note 2) DC Input Diode Current -50 $V_I < GND$ mΑ I_{IK} V_O < GND DC Output Diode Current -50 mΑ I_{OK} DC Output Current 64 V_O > V_{CC} Output at High State $\mathsf{m}\mathsf{A}$ V_O > V_{CC} Output at Low State 128 DC Supply Current per Supply Pin I_{CC} ±64 mΑ DC Ground Current per Ground Pin I_{GND} ±128 Storage Temperature -65 to +150 $\mathsf{T}_{\mathsf{STG}}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: Io Absolute Maximum Rating must be observed.

DC Electrical Characteristics

			V _{CC}	T _A =	-40°C to +	85°C		
Symbol	Parame	er	(V)	Min	Typ (Note 3)	Max	Units	Conditions
V _{IK}	Input Clamp Diode Volta	ige	2.7			-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0			V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7–3.6			8.0	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2				$I_{OH} = -100 \mu A$
			2.7	2.4			V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0				$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage		2.7			0.2		$I_{OL} = 100 \mu A$
			2.7			0.5		I _{OL} = 24 mA
			3.0			0.4	V	I _{OL} = 16 mA
			3.0			0.5		I _{OL} = 32 mA
			3.0			0.55		I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum	Bushold Input Minimum Drive		75			μА	$V_{I} = 0.8V$
(Note 4)				-75			μι	V _I = 2.0V
I _{I(OD)}	Bushold Input Over-Driv	re	3.0	500			μА	(Note 5)
(Note 4)	Current to Change State	e		-500			μΛ	(Note 6)
I _I	Input Current		3.6			10		V _I = 5.5V
		Control Pins	3.6			±1	μА	$V_I = 0V$ or V_{CC}
		Data Pins	3.6			-5	μΛ	$V_I = 0V$
						1	1	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Cur	rent	0			±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power up/down 3-STAT	E	0-1.5V			±100	μΑ	V _O = 0.5V to 3.0V
	Output Current							$V_I = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage	ge Current	3.6			-5	μΑ	V _O = 0.5V

DC Electrical Characteristics (Continued)

		V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$					
Symbol	Parameter		Min	n Typ		Units	Conditions	
		(V)		(Note 3)				
I _{OZH}	3-STATE Output Leakage Current	3.6			5	μΑ	$V_0 = 3.0V$	
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μΑ	$V_{CC} < V_O \le 5.5V$	
Гссн	Power Supply Current	3.6			0.19	mA	Outputs High	
I _{CCL}	Power Supply Current	3.6			5	mA	Outputs Low	
I _{CCZ}	Power Supply Current	3.6			0.19	mA	Outputs Disabled	
I _{CCZ} +	Power Supply Current	3.6			0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
							Outputs Disabled	
ΔI_{CC}	Increase in Power Supply Current	3.6			0.2	mA	One Input at V _{CC} – 0.6V	
	(Note 7)						Other Inputs at V _{CC} or GND	

Note 3: All typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.

Note 4: Applies to bushold versions only (74LVTH573).

Note 5: An external driver must source at least the specified current to switch from LOW to HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH to LOW.

 $\textbf{Note 7:} \ \text{This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.}$

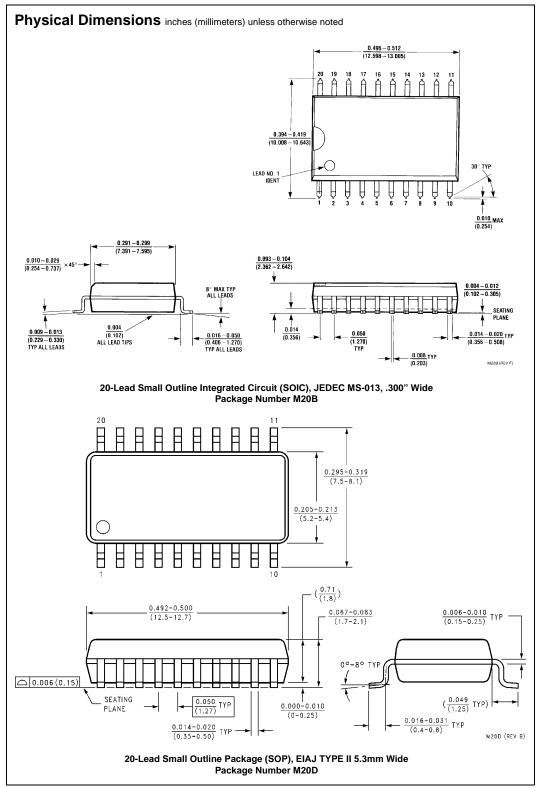
Dynamic Switching Characteristics (Note 8)

•	-	v _{cc}	T _A = 25°C				Conditions C _I = 50 pF	
Symbol	Parameter	(V)	Min	Тур	Max	Units	$R_L = 500\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)	

Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested.

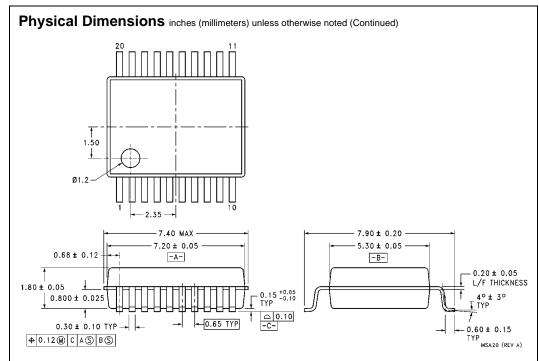
Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics


Symbol		$T_A = -40^{\circ}\text{C}$ to +85°C $C_L = 50$ pF, $R_L = 500\Omega$						
	Parameter		$V_{CC} = 3.3V \pm 0.3V$	V _{CC} =	Units			
		Min	Typ (Note 10)	Max	Min	Max	†	
t _{PHL}	Propagation Delay	1.5		4.4	1.5	4.9	ns	
t _{PLH}	D _n to O _n	1.5		4.1	1.5	4.7	ns	
t _{PHL}	Propagation Delay	1.9		4.4	1.9	4.9	ns	
t _{PLH}	LE to O _n	1.9		4.4	1.9	5.0	115	
t _{PZL}	Output Enable Time	1.5		5.1	1.5	6.6		
t _{PZH}		1.5		5.1	1.5	5.9	ns	
t _{PLZ}	Output Disable Time	2.0		4.6	2.0	4.9	ns	
t _{PHZ}		2.0		4.9	2.0	5.5	115	
t _S	Setup Time, D _n to LE	0.7			0.6		ns	
t _H	Hold Time, D _n to LE	1.5			1.7		ns	
t _W	LE Pulse Width	3.0			3.0		ns	
toshl	Output to Output Skew (Note 11)			1.0		1.0	ns	
toslh				1.0		1.0	115	

Note 10: All typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).


Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	6	pF

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 6.5±0.1 -0.20 20 7. 24 4.16 6,4 4.4±0.1 -B-32 PIN #1 IDENT. LAND PATTERN RECOMMENDATION O.1 C ALL LEAD TIPS SEE DETAIL A -0.90+0.15 0.09-0.20 0.1±0.05 أ 0.65 -12.00° R0.09mir GAGE PLANE DIMENSIONS ARE IN MILLIMETERS 0.25 SEATING PLANE NOTES: A. CONFORMS TO JEDEC REGISTRATION MID-153, VARIATION AC, REF NOTE 6, DATE $7/93.\,$ -0.6±0.1--R0.09mln B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS. DETAIL A D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com