November 1999 Revised January 2000

74LVT2245 • 74LVTH2245 Low Voltage Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs and 25Ω Series Resistors in the B Port Outputs

General Description

Ordering Code:

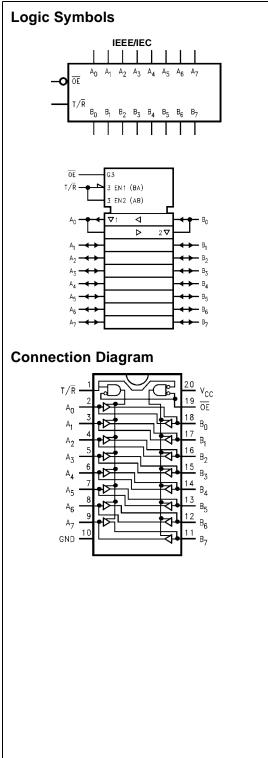
FAIRCHILD

SEMICONDUCTOR

The LVT2245 and LVTH2245 contain eight non-inverting bidirectional buffers with 3-STATE outputs and are intended for bus-oriented applications. The Transmit/ Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B Ports by placing them in a high impedance state. The equivalent 25Ω -series resistor in the B Port helps reduce output overshoot and undershoot.

The LVTH2245 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These transceivers are designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT2245 and LVTH2245 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.


Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Equivalent 25 Ω series resistor on B Port outputs
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH2245), also available without bushold feature (74LVT2245)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –12 mA/+12 mA on B Port, -32 mA/+64 mA on A Port
- Latch-up performance exceeds 500 mA

Order Number	Package Number	Package Description
74LVT2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVT2245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVT2245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVT2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH2245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVTH2245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

© 2000 Fairchild Semiconductor Corporation DS012173

Pin Descriptions

Pin Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs

Truth Table

Inp	outs	Outputo		
OE	T/R	Outputs		
L	L	Bus B Data to Bus A		
L	н	Bus A Data to Bus B		
н	х	HIGH-Z State		

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +4.6		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)		
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
lo	DC Output Current	64	V _O > V _{CC} Output at HIGH State		
		128	V _O > V _{CC} Output at LOW State	mA	
I _{CC}	DC Supply Current per Supply Pin	±64		mA	
I _{GND}	DC Ground Current per Ground Pin	±128		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage		2.7	3.6	V
VI	Input Voltage		0	5.5	V
I _{OH}	HIGH-Level Output Current	A Port		-32	4
		B Port		-12	mA
I _{OL}	LOW-Level Output Current	A Port		64	
		B Port		12	mA
T _A	Free Air Operating Temperature		-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_O Absolute Maximum Rating must be observed.

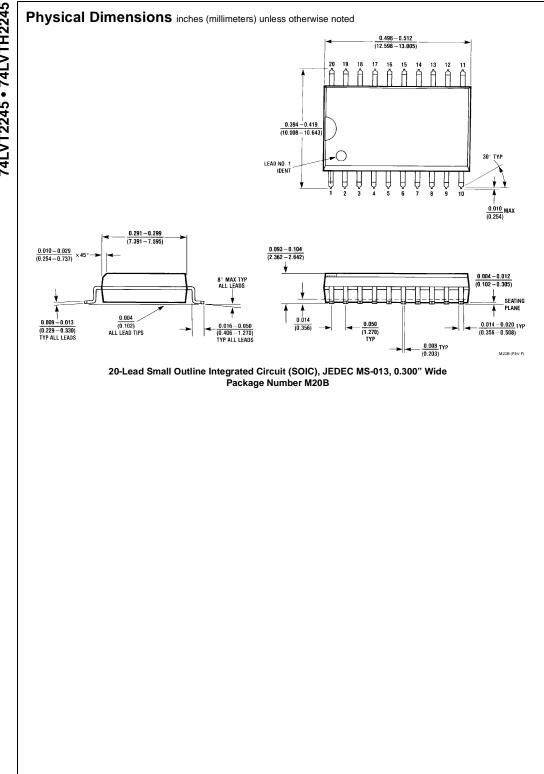
Cumhal	Demonster		V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Symbol	Parameter		(V)	Min Max		Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0		V	$V_0 \le 0.1V$ or
VIL	Input LOW Voltage		2.7–3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage	A Port	2.7	2.4		v	$I_{OH} = -8 \text{ mA}$
			3.0	2.0			I _{OH} = -32 mA
		B Port	3.0	2.0		V	$I_{OH} = -12 \text{ mA}$
			2.7–3.6	V _{CC} -0.2		V	I _{OH} = -100 μA
V _{OL}	Output LOW Voltage	A Port	2.7		0.5	-	$I_{OL} = 24 \text{ mA}$
			3.0 3.0		0.4 0.5	V	$I_{OL} = 16 \text{ mA}$
			3.0		0.55	-	$I_{OL} = 32 \text{ mA}$
		B Port	3.0		0.33	v	$I_{OL} = 64 \text{ mA}$ $I_{OL} = 12 \text{ mA}$
		BTOIL	2.7		0.2	v	$I_{OL} = 12 \text{ mA}$
I _{I(HOLD)}	Bushold Input Minimum Dri	ve	3.0	75	0.2		V _I = 0.8V
(Note 3)				-75		μA	$V_1 = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 4)
(Note 3)	Current to Change State			-500			(Note 5)
I	Input Current		3.6		10		$V_{1} = 5.5V$
		Control Pins	3.6		±1	· .	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μA	$V_I = 0V$
					1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current	t	0		±100	μΑ	$0V \le V_1 \text{ or } V_0 \le 5.5V$
I _{PU/PD}	Power Up/Down		0–1.5V		±100	μA	$V_{O} = 0.5V$ to $3.0V$
	3-STATE Current		0 1.01		2.00	μυτ	$V_I = GND \text{ or } V_{CC}$
l _{OZL}	3-STATE Output Leakage (3.6		-5	μA	$V_0 = 0.5V$
I _{OZL} (Note 3)	3-STATE Output Leakage (3.6		-5	μΑ	$V_0 = 0.0V$
I _{OZH}	3-STATE Output Leakage (3.6		5	μA	V _O = 3.0V
	3-STATE Output Leakage		3.6		5	μΑ	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage (Surrent	3.6		10	μA	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6 3.6		0.19 5	mA	Outputs High
	Power Supply Current Power Supply Current		3.6		5 0.19	mA mA	Outputs Low Outputs Disabled
	Power Supply Current		3.0		0.19	IIIA	$V_{CC} \le V_O \le 5.5V,$
I _{CCZ} +			3.6		0.19	mA	Outputs Disabled
ΔI_{CC}	Increase in Power Supply ((Note 6)	Current	3.6		0.2	mA	One Input at $V_{CC} - 0.6V$ Other Inputs at V_{CC} or GNI
Note 4: An ext	s to Bushold versions only (74) ernal driver must source at lea ernal driver must sink at least t	st the specified cur					

Dynamic Switching Characteristics (Note 7)

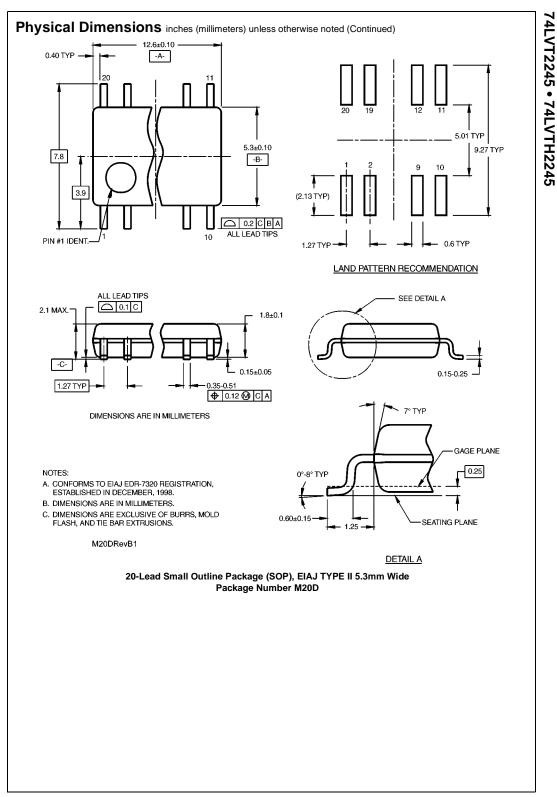
		V _{cc}	$T_A = 25^{\circ}C$				Conditions	
Symbol	Parameter	(V)	Min	n Typ Max Unit		Units	C _L = 50 pF, R _L = 500Ω	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 8)	

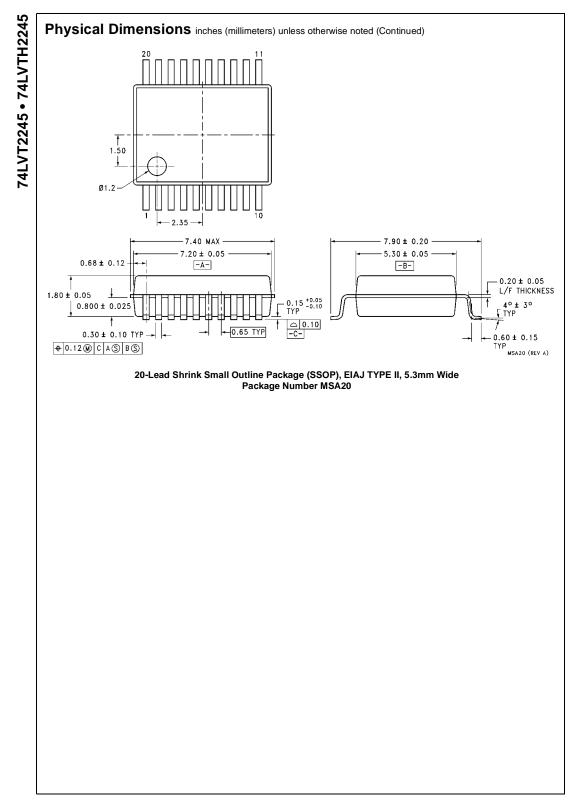
Note 7: Characterized in SOIC package. Guaranteed parameter, but not tested.

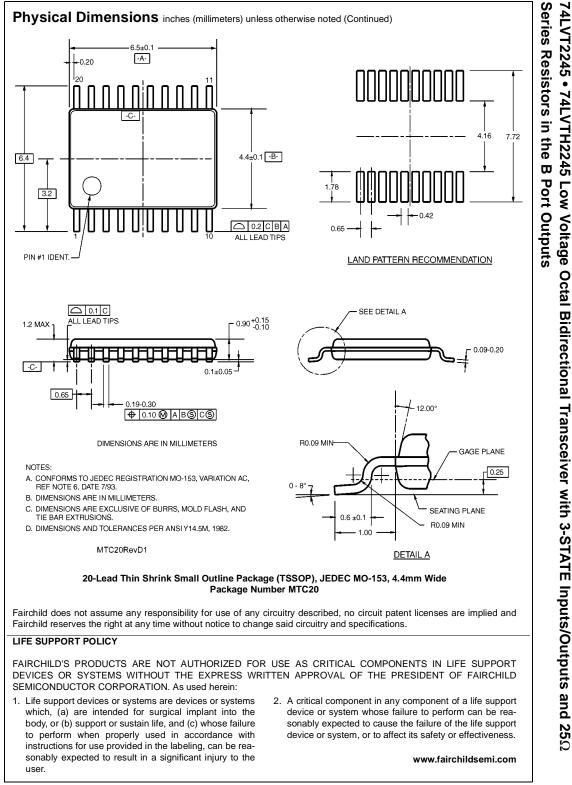
Note 8: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.


0 miliot			T _A = −40°C to +85°C					
	Parameter		Units					
Symbol		V _{CC} = 3.	$V_{CC} = 2.7V$					
		Min	Max	Min	Max			
t _{PLH}	Propagation Delay Data to B Port Output	1.2	4.4	1.2	5.1			
t _{PHL}		1.2	4.4	1.2	5.1	ns		
t _{PLH}	Propagation Delay Data to A Port Output	1.2	3.6	1.2	4.0			
t _{PHL}		1.2	3.5	1.2	4.0	ns		
t _{PZH}	Output Enable Time for B Port Output	1.3	6.2	1.3	7.3			
t _{PZL}		1.7	6.2	1.7	7.3	ns		
t _{PZH}	Output Enable Time for A Port Output	1.3	5.5	1.3	7.1			
t _{PZL}		1.7	5.7	1.7	6.7	ns		
t _{PHZ}	Output Disable Time for B Port Output	2.0	5.9	2.0	6.5			
t _{PLZ}		2.0	5.4	2.0	5.7	ns		
t _{PHZ}	Output Disable Time for A Port Output	2.0	5.9	2.0	6.5			
t _{PLZ}		2.0	5.0	2.0	5.1	ns		
t _{OSHL}	A Port Output to Output Skew		1.0		1.0			
t _{OSLH}	(Note 9)		1.0		1.0	ns		
t _{OSHL}	B Port Output to Output Skew		1.0		1.0			
t _{OSLH}	(Note 9)		1.0		1.0	ns		

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Capacitance (Note 10)


Symbol	Parameter	Conditions	Typical	Units					
CIN	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V_{CC}$	4	pF					
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF					
Note 40. One offer	Note 40: Open site and the second of the second to the second U. OTD 000 Mathed 0040								


Note 10: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

74LVT2245 • 74LVTH2245

