January 2000 Revised January 2000

FAIRCHILD

SEMICONDUCTOR

74LVTH16952 Low Voltage 16-Bit Registered Transceiver with 3-STATE Outputs

General Description

The LVTH16952 is a 16-bit registered transceiver. Two 8bit back to back registers store data flowing in both directions between two bidirectional buses. Separate clock, clock enable, and output enable signals are provided for each register.

The LVTH16952 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The registered transceiver is designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment.

The LVTH16952 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16952
- Latch-up performance exceeds 500 mA

Ordering Code:

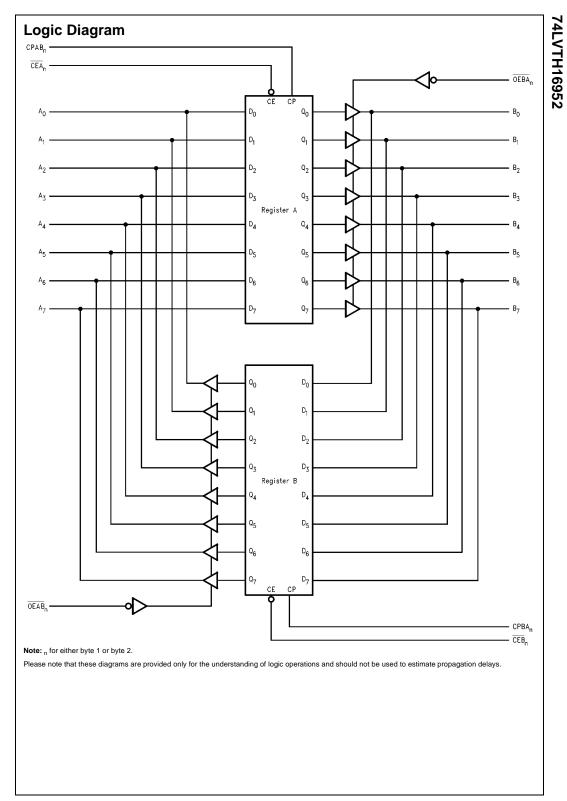
Order Number	Package Number	Package Description
74LVTH16952MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16952MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS500103

74LVTH16952

Connection Diagram						
OEAB	1	56 — OEBA ₁				
СРАВ ₁ —	2	55 — СРВА ₁				
CEA ₁	3	54 — CEB ₁				
gnd —	4	53 — GND				
A ₀ —	5	52 — В _О				
A ₁ —	6	51 — B ₁				
v _{cc} —	7	50 — V _{CC}				
A ₂ —	8	49 — B ₂				
A3 -	9	48 — B ₃				
A4	10	47 — B ₄				
gnd —	11	46 — GND				
А ₅ —	12	45 — B ₅				
A ₆ —	13	44 — B ₆				
A ₇ —	14	43 — B ₇				
А ₈ —	15	42 — B ₈				
A ₉ —	16	4 1 — B ₉				
A ₁₀ —	17	40 — B ₁₀				
gnd —	18	39 — GND				
A ₁₁ —	19	38 — B ₁₁				
A ₁₂ —	20	37 — B ₁₂				
A ₁₃ —	21	36 — B ₁₃				
v _{cc} —	22	35 — V _{CC}				
A ₁₄ —	23	34 — B ₁₄				
A ₁₅ —	24	33 — B ₁₅				
gnd —	25	32 — GND				
CEA ₂ -	26	31 — CEB ₂				
CPAB ₂ —	27	30 — СРВА ₂				
OEAB ₂ -	28	29 — OEBA ₂				


Pin Descriptions

Pin Names	Description
A ₀ -A ₁₆	Data Register A Inputs B-Register 3-STATE Outputs
B ₀ -B ₁₆	Data Register B Inputs A-Register 3-STATE Outputs
CPAB _n , CPBA _n	Clock Pulse Inputs
$\overline{CEA}_n, \overline{CEB}_n$	Clock Enable
$\overline{\text{OEAB}}_n, \overline{\text{OEBA}}_n$	Output Enable Inputs

Truth Table(Note 1)

	Ir	nputs		Internal Register	Output
A _n	CPAB _n	$\overline{\text{CEA}}_n$	OEAB _n	Value	B _n
Х	Х	Н	L	NC	B ₀
Х	Х	Н	Н	NC	Z
L	~	L	L	L	L
L	~	L	Н	L	Z
Н	~	L	L	Н	Н
Н	~	L	Н	н	Z
Х	L	Х	L	NC	B ₀
Х	Н	Х	L	NC	B ₀
Х	L	Х	Н	NC	Z
Х	Н	Х	Н	NC	Z

Note 1: A to B data flow shown; B to A flow control is the same, but used $\overline{\text{OEBA}_n}, \text{CPBA}_n$ and $\overline{\text{CEB}_n}.$

74LVTH16952

Absolute Maximum Ratings(Note 2)

Symbol Parameter Value Conditions Units -0.5 to +4.6 V Supply Voltage V_{CC} -0.5 to +7.0 V VI DC Input Voltage V_{O} DC Output Voltage -0.5 to +7.0 Output in 3-STATE ٧ Output in HIGH or LOW State (Note 3) -0.5 to +7.0 V DC Input Diode Current -50 V_I < GND mΑ I_{IK} V_O < GND DC Output Diode Current -50 mΑ I_{OK} DC Output Current V_O > V_{CC} Output at HIGH State 64 l_o mΑ 128 Output at LOW State $V_{O} > V_{CC}$ DC Supply Current per Supply Pin ±64 mΑ I_{CC} DC Ground Current per Ground Pin ±128 mΑ I_{GND} Storage Temperature -65 to +150 °C T_{STG}

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
V _I	Input Voltage	0	5.5	V
ОН	HIGH-Level Output Current		-32	mA
OL	LOW-Level Output Current		64	- IIA
Γ _A	Free-Air Operating Temperature	-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 3: I_O Absolute Maximum Rating must be observed.

	Parameter		V _{cc}	$T_A = -40^{\circ}C$	C to +85°C		
Symbol			(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
VIL	Input LOW Voltage		2.7-3.6		0.8	v	$V_{O} \ge V_{CC} - 0.1V$
V _{ОН}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μΑ	$V_{I} = 0.8V$
				-75		μΑ	$V_{I} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive Current to Change State		3.0	500		μΑ	(Note 4)
				-500		μΑ	(Note 5)
l	Input Current		3.6		10	μΑ	$V_{I} = 5.5V$
	l í	Control Pins	3.6		±1	μΑ	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
					1	μΑ	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE Output Current		0–1.5V		±100	μΑ	$V_O = 0.5V$ to 3.0V $V_I = GND$ or V_{CC}
lozL	3-STATE Output Leakage Cur	rent	3.6		-5	μA	$V_0 = 0.0V$
I _{OZH}	3-STATE Output Leakage Cur	rent	3.6		5	μA	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage Cur	rent	3.6		10	μA	V _{CC} < V _O ≤ 5.5V
Іссн	Power Supply Current		3.6		0.19	mA	Outputs High
ICCL	Power Supply Current		3.6		5	mA	Outputs Low
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled
ΔI _{CC}	Increase in Power Supply Cur (Note 6)	3.6		0.2	mA	One Input at $V_{CC} - 0.6V$ Other Inputs at V_{CC} or GND	

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

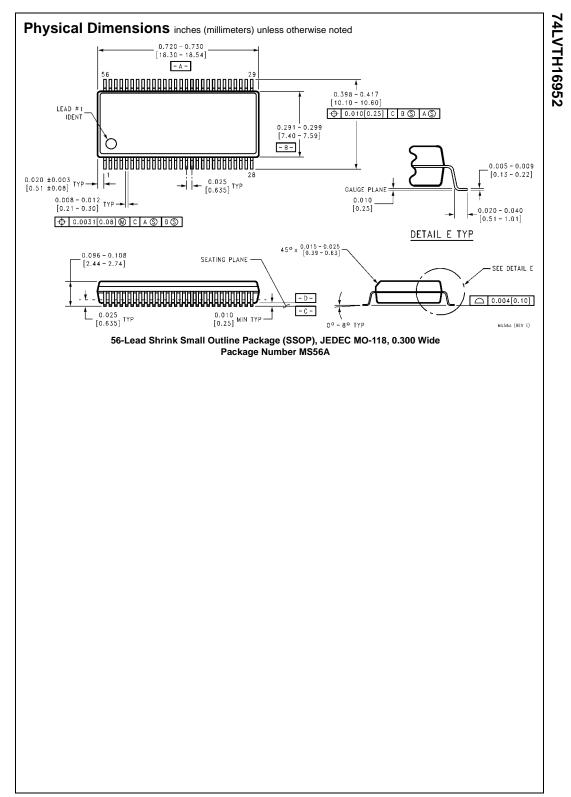
Dynamic Switching Characteristics (Note 7)

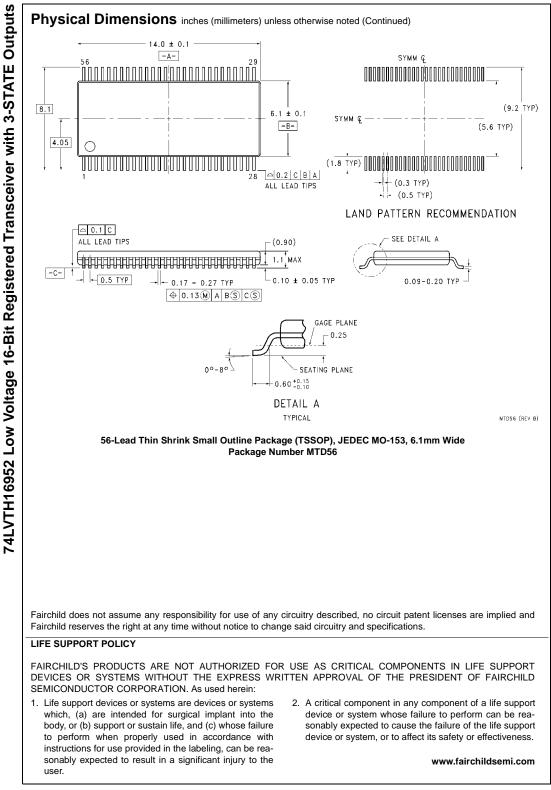
Symbol	Parameter	v _{cc}	T _A = 25°C			Units	Conditions
Symbol		(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 8)
V _{OLV}	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 8: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

74LVTH16952


AC Electrical Characteristics


			Units				
Symbol	Parameter						
Symbol			$V_{CC}=3.3\pm0.3V$		$V_{CC} = 2.7V$		Units
		Min	Max	Min	Max		
f _{MAX}	Maximum Clock Freque	150		150		MHz	
t _{PLH}	Propagation Delay			4.4	1.3	4.7	
PHL	CPBA or CPAB to A or	CPBA or CPAB to A or B			1.3	5.0	ns
^t PZH	Output Enable Time		1.0	4.3	1.0	4.9	
PZL	OE to A or B	1.0	4.8	1.0	5.7	ns	
t _{PHZ}	Output Disable Time	Output Disable Time			2.1	6.2	ns
PLZ	OE to A or B		2.1	5.1	2.1	5.3	115
t _W	Pulse Width, CPAB or C	CPBA HIGH or LOW	3.3		3.3		ns
^t s	Setup Time	A or B before CPAB or CPBA	1.7		2.5		ns
		CEA or CEB before CPAB or CPBA	2.0		2.8		115
ŀн	Hold Time	A or B after CPAB or CPBA	0.8		0.0		
		CEA or CEB after CPAB or CPBA	0.4		0.0		ns
OSLH	Output to Output Skew	(Note 9)		1.0		1.0	ns
tosu				1.0		10	ns

 Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units			
C _{IN}	Input Capacitance	$V_{CC} = OPEN, V_I = 0V \text{ or } V_{CC}$	4	pF			
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_O = 0V$ or V_{CC}	8	pF			
Note 10: Capa	Note 10: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.						

