

Pin Descriptions

Pin Names	Description
$A_{0}-A_{15}$	Data Register A Inputs/3-STATE Outputs
$B_{0}-B_{15}$	Data Register B Inputs/3-STATE Outputs
CPAB $_{n}$, CPBA $_{n}$	Clock Pulse Inputs
$\mathrm{SAB}_{n}, \mathrm{SBA}_{n}$	Select Inputs
$\overline{O E}_{1}, \overline{O E}_{2}$	Output Enable Inputs
DIR_{n}	Direction Control Inputs

Truth Table(Note 1)

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select $\left(\mathrm{SAB}_{\mathrm{n}}, \mathrm{SBA}_{\mathrm{n}}\right)$ controls can multiplex stored and real-time. The examples shown below demonstrate the four fundamental bus-management functions that can be performed

Real-Time Transfer

Bus B to Bus A

$\overline{O E}$ DIR CPAB CPBA SAB SBA

$L \quad L \quad X \quad X \quad X \quad L$

Transfer Storage
Data to A or B

$\overline{O E}$ DIR CPAB CPBA SAB SBA
$\begin{array}{cccccc}L & L & X & H \text { or } L & X & H \\ L & H & H & \text { or } & X & H\end{array}$

The direction control (DIR_{n}) determines which bus will receive data when $\overline{\mathrm{OE}}_{n}$ is LOW. In the isolation mode $\left(\overline{\mathrm{OE}}_{n}\right.$ HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.

Storage

$\overline{\text { OE }}$	DIR	CPAB	CPBA	SAB	SBA
L	H	\sim	X	L	X
L	L	X	\sim	X	L
H	X	\sim	X	X	X
H	X	X	\sim	X	X

Absolute Maximum Ratings(Note 2)					
Symbol	Parameter	Value	Conditions		Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +4.6			V
V_{1}	DC Input Voltage	-0.5 to +7.0			V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE		V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)		V
I_{K}	DC Input Diode Current	-50	$V_{1}<$ GND		mA
$\mathrm{I}_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$		mA
I_{0}	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State		mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at LOW State		
I_{CC}	DC Supply Current per Supply Pin	± 64			mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128			mA
TSTG	Storage Temperature	-65 to +150			${ }^{\circ} \mathrm{C}$
Recommended Operating Conditions					
Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage		2.7	3.6	V
V_{1}	Input Voltage		0	5.5	V
IOH	HIGH-Level Output Current			-32	mA
$\mathrm{IOL}^{\text {l }}$	LOW-Level Output Current			64	
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns/V
Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 3: I_{O} Absolute Maximum Rating must be observed.					

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max			
V_{IK}	Input Clamp Diode Voltage	2.7		-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
$\overline{\mathrm{V}} \mathrm{IL}$	Input LOW Voltage	2.7-3.6		0.8			
V_{OH}	Output HIGH Voltage	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
		2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	
		3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	
V_{OL}	Output LOW Voltage	2.7		0.2	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
		2.7		0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	
		3.0		0.4	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	
		3.0		0.5	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	
		3.0		0.55	V	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	
$I_{\text {(HOLD })}$	Bushold Input Minimum Drive	3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
			-75		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$	
$\overline{I_{(O D)}}$	Bushold Input Over-Drive Current to Change State	3.0	500		$\mu \mathrm{A}$	(Note 4)	
			-500		$\mu \mathrm{A}$	(Note 5)	
I	Input CurrentControl Pins Data Pins	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
		3.6		± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	
				1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$	
IOFF	Power Off Leakage Current	0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Output Current	0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
IozL	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	
$\mathrm{I}_{\text {OZH }}$	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$	
lozH^{+}	3-STATE Output Leakage Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {CCH }}$	Power Supply Current	3.6		0.19	mA	Outputs HIGH	
${ }^{\text {ICCL }}$	Power Supply Current	3.6		5	mA	Outputs LOW	
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current	3.6		0.19	mA	Outputs Disabled	
ICCZ^{+}	Power Supply Current	3.6		0.19	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, \\ & \text { Outputs Disabled } \end{aligned}$	
$\overline{\Delta l}^{\text {CC }}$	Increase in Power Supply Current (Note 6)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND	
Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or Dynamic Switching Characteristics (Note 7)							
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 8)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 8)
Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested. Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.							

AC Electrical Characteristics

Symbol	Parameter		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				Units
			$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		150		150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CPAB or CPBA to A or B		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to A or B		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.1 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A or B		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.6 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \overline{t_{\text {PHZ }}} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time DIR to A or B		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time DIR to A or B		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 5.9 \end{aligned}$	ns
t_{W}	Pulse Duration CPAB or CPBA HIGH or LOW		3.3		3.3		ns
t_{S}	Setup Time	A or B before CPAB or CPBA, Data HIGH	1.2		1.5		ns
		A or B before CPAB or CPBA, Data LOW	2.0		2.8		
t_{H}	Hold Time	A or B after CPAB or CPBA, Data HIGH	0.5		0.0		ns
		A or B after CPAB or CPBA, Data LOW	0.5		0.5		
toshL $t^{\text {OSLH}}$	Output to Output Skew (Note 9)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH (t $\mathrm{OSSL}^{\text {OSH }}$).

Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{/ \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 10: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
