ANALOG DEVICES

CMOS 4/8 Channel Analog Multiplexers

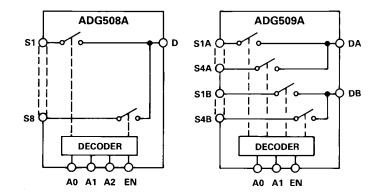
ADG508A/ADG509A

FEATURES

44V Supply Maximum Rating V_{SS} to V_{DD} Analog Signal Range Single/Dual Supply Specifications Wide Supply Ranges (10.8V to 16.5V) Extended Plastic Temperature Range (-40°C to +85°C) Low Power Dissipation (28mW max) Low Leakage (20pA typ) Available in 16-Lead DIP/SOIC and 20-Lead PLCC/LCCC Packages Superior Alternative to: DG508A, HI-508 DG509A, HI-509

GENERAL DESCRIPTION

The ADG508A and ADG509A are CMOS monolithic analog multiplexers with 8 channels and dual 4 channels respectively. The ADG508A switches one of 8 inputs to a common output depending on the state of three binary addresses and an enable input. The ADG509A switches one of 4 differential inputs to a common differential output depending on the state of two binary addresses and an enable input. Both devices have TTL and 5V CMOS logic compatible digital inputs.


The ADG508A and ADG509A are designed on an enhanced LC^2MOS process which gives an increased signal capability of V_{SS} to V_{DD} and enables operation over a wide range of supply voltages. The devices can comfortably operate anywhere in the 10.8V to 16.5V single or dual supply range. These multiplexers also feature high switching speeds and low R_{ON} .

PRODUCT HIGHLIGHTS

- 1. Single/Dual Supply Specifications with a Wide Tolerance: The devices are specified in the 10.8V to 16.5V range for both single and dual supplies.
- 2. Extended Signal Range: The enhanced LC^2MOS processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD}.
- 3. Break-Before-Make Switching: Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
- 4. Low Leakage:

Leakage currents in the range of 20pA make these multiplexers suitable for high precision circuits.

FUNCTIONAL BLOCK DIAGRAMS

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG508AKN ADG508AKR ADG508AKP ADG508ABQ ADG508ATQ ADG508ATE	$-40^{\circ}C \text{ to } +85^{\circ}C \\ -40^{\circ}C \text{ to } +85^{\circ}C \\ -40^{\circ}C \text{ to } +85^{\circ}C \\ -40^{\circ}C \text{ to } +85^{\circ}C \\ -55^{\circ}C \text{ to } +125^{\circ}C \\ -55^{\circ}C \ -55^{\circ}$	N-16 R-16A P-20A Q-16 Q-16 E-20A
ADG509AKN ADG509AKR ADG509AKP ADG509ABQ ADG509ATQ ADG509ATE	-40°C to + 85°C -40°C to + 85°C -40°C to + 85°C -40°C to + 85°C -55°C to + 125°C -55°C to + 125°C	N-16 R-16A P-20A Q-16 Q-16 E-20A

NOTES

¹To order MIL-STD-883, Class B processed parts, add /883B to part number. See Analog Devices Military Products Databook (1990) for military data sheet. ²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = 0.15" Small Outline IC (SOIC).

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG508A/ADG509A — SPECIFICATIONS

DUAL SUPPLY (v_{DD} = +10.8V to +16.5V, v_{SS} = -10.8V to -16.5V unless otherwise specified)

	ADG ADG K Ver	509A	AD	G508A G509A ersion	ADC	3508A 3509A ersion		
Parameter	+25°C	- 40°C to + 85°C	25℃	- 40°C to + 85°C	+ 25°C	55°C to + 125℃	Units	Comments
ANALOG SWITCH								
Analog Signal Range	V _{ss}	V _{ss}	Vss	V _{ss}	Vss	V _{ss}	V min	
	V_{DD}	V _{DD}	V _{DD}	V_{DD}	V _{DD}	V_{DD}	V max	
R _{ON}	280		280		280		Ωtyp	$-10V \le V_S \le +10V$, $I_{DS} = 1mA$; Test Circuit
	450	600	450	600	450	600	Ω max	
	300	400	300	400	300	400	$\Omega \max$ $\Omega \max$	$V_{DD} = 15V(\pm 10\%), V_{SS} = -15V(\pm 10\%)$ $V_{DD} = 15V(\pm 5\%), V_{SS} = -15V(\pm 5\%)$
R _{ON} Drift	0.6		0.6		0.6	400	%/°C typ	$V_{\rm DD} = 15V(\pm 5\%), V_{\rm SS} = -15V(\pm 5\%)$ $V_{\rm S} = 0, I_{\rm DS} = 1\text{mA}$
R _{ON} Match	5		5		5		% typ	$-10V \le V_S \le +10V, I_{DS} = 1mA$
I _S (OFF), Off Input Leakage	0.02		0.02		0.02		nA typ	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 2
is (of i), on input beakage	1	50	1	50	1	50	nA max	
I _D (OFF), Off Output Leakage	0.04		0.04		0.04		nA typ	$V1 = +10V$, $V2 = \mp 10V$; Test Circuit 3
ADG508A	1	100	1	100	1	100	nAmax	
ADG509A	1	50	1	50	1	50	nA max	
I _D (ON), On Channel Leakage	0.04		0.04		0.04		nA typ	$V1 = V2 = \pm 10V$; Test Circuit 4
ADG508A	1	100	1	100	1	100	nA max	
ADG509A	1	50	1	50	1	50	nA max	
I _{DIFF} , Differential Off Output						25		
Leakage (ADG509A only)		25		25		25	nA max	$V1 = \pm 10V, V2 = \mp 10V;$ Test Circuit 5
DIGITAL CONTROL								
V _{INH} , Input High Voltage		2.4		2.4		2.4	V min V max	
V _{INL} , Input Low Voltage I _{INL} or I _{INH}		0.8 1		0.8 1		0.8 1	ν max μA max	$V_{IN} = 0$ to V_{DD}
C _{IN} Digital Input Capacitance	8	1	8	1	8	1	pFmax	VIN - 0 to VDB
DYNAMIC CHARACTERISTICS							1	
t _{TRANSITION} ¹	200		200		200		ns typ	$V1 = \pm 10V$, $V2 = \mp 10V$; Test Circuit 6
TRANSITION	300	400	300	400	300	400	ns max	
LOPEN ¹	50		50		50		ns typ	Test Circuit 7
	25	10	25	10	25	10	ns min	
$t_{ON}(EN)^1$	200		200		200		ns typ	Test Circuit 8
	300	400	300	400	300	400	ns max	
$t_{OFF}(EN)^1$	200		200		200		ns typ	Test Circuit 8
	300	400	300	400	300	400	ns max	
OFF Isolation	68		68		68		dBtyp	$V_{\rm EN} = 0.8V, R_{\rm L} = 1k\Omega, C_{\rm L} = 15pF,$
	50		50		50		dBmin	$V_s = 7V \text{ rms}, f = 100 \text{ kHz}$
C _S (OFF)	5		5		5		pF typ	V _{EN} =0.8V
$C_D(OFF)$	-						r or	- Lot V
ADG508A	22		22		22		pF typ	$V_{EN} = 0.8V$
ADG509A	11		11		11		pF typ	
Q _{INJ} , Charge Injection	4		4		4		pC typ	$R_s = 0\Omega, V_s = 0;$ Test Circuit 9
POWER SUPPLY							Ι.	
I _{DD}	0.6	1 5	0.6	15	0.6	15	mA typ	$V_{IN} = V_{INL}$ or V_{INH}
		1.5		1.5		1.5	mA max	
I _{SS}	20	0.2	20	0.2	20	0.2	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		0.2		0.2		0.2	mA max	
Power Dissipation	10		10	• •	10	•••	mW typ	
		28	1	28	1	28	mW max	

NOTE 'Sample tested at 25°C to ensure compliance.

Specifications subject to change without notice.

ADG508A/ADG509A

4

SINGLE SUPPLY (V_{DD} = +10.8V to +16.5V, V_{SS} = GND = 0V unless otherwise noted.)

	ADG ADG K Ver	509A	ADG	508A 509A rsion	ADO	508A 509A ersion		
D	1 1500	- 40°C to + 85°C	+25°C	- 40°C to + 85°C	+25°C	– 55°C to + 125°C	Units	Comments
Parameter	+ 25°C	+ 65 C	+25 C	+ 65 C	+25 C	+125 C		Comments
ANALOG SWITCH Analog Signal Range	GND	GND	GND	GND	GND	GND	V min	
Allalog Signal Kalige		V _{DD}		V _{DD}	VDD	V _{DD}	V max	
R _{ON}	500	· DD	500	. 100	500	· DD	Ωtyp	$GND \le V_S \le +10V$, $I_{DS} = 0.5mA$ Test; Circuit 1
	700	1000	700	1000	700	1000	Ω max	
R _{ON} Drift	0.6		0.6		0.6		%/°C typ	$V_{\rm S} = 0, I_{\rm DS} = 0.5 \text{mA}$
R _{ON} Match	5		5		5		% typ	$\text{GND} \le \text{V}_{\text{S}} \le +10\text{V}, \text{I}_{\text{DS}} = 0.5\text{mA}$
I _S (OFF), Off Input Leakage	0.02		0.02		0.02		nA typ	$V1 = + \frac{10V}{GND}, V2 = \frac{GND}{+ 10V},$
	1	50	1	50	1	50	nA max	Test Circuit 2
$I_D(OFF)$, Off Output Leakage	0.04		0.04		0.04		nA typ	V1 = +10V/GND, V2 = GND/ +10V;
ADG508A	1	100	1	100		100	nA max	Test Circuit 3
ADG509A	1	50	1	50	1	50	nA max	
$I_D(ON)$, On Channel Leakage	0.04	100	0.04	100	0.04	100	nA typ	V1 = V2 = +10V/GND;
ADG508A ADG509A		100 50	1	100 50		100 50	nA max nA max	Test Circuit 4
I _{DIFF} , Differential Off Output	1	50	1	50	1	50		V1 = +10V/GND, V2 = GND/ +10V;
Leakage (ADG509A only)		25		25		25	nA max	Test Circuit 5
DIGITAL CONTROL		-		-				
V _{INH} , Input High Voltage		2.4		2.4		2.4	V min	
VINL, Input Low Voltage		0.8		0.8		0.8	V max	
I _{INL} or I _{INH}		1		1		1	μA max	$V_{IN} = 0$ to V_{DD}
C _{IN} Digital Input Capacitance	8		8		8		pF max	
DYNAMIC CHARACTERISTICS							1	
t _{TRANSITION} ¹	300	(00	300	(00	300	600	ns typ	V1 = +10V/GND, $V2 = GND/ +10V$; Test Cicuit 6
	450	600	450	600	450	000	ns max	
t _{OPEN}	50	10	50 25	10	50	10	ns typ	Test Circuit 7
	25	10		10	25	10	ns min	
$t_{ON}(EN)^1$	250	(00	250	(00	250	(00	ns typ	Test Circuit 8
	450	600	450	600	450	600	ns max	
$t_{OFF}(EN)^1$	250	(00	250	(00	250	600	ns typ	Test Circuit 8
	450	600	450	600	450	600	ns max	
OFF Isolation	68		68		68		dB typ	$V_{EN} = 0.8V, R_L = 1k\Omega, C_L = 15pF,$ $V_S = 3.5V \text{ rms}, f = 100 \text{kHz}$
	50		50		50		dBmin	
$C_{s}(OFF)$	5		5		5		pF typ	$V_{EN} = 0.8V$
C _D (OFF) ADG508A	22		22		22		pF typ	$V_{EN} = 0.8V$
ADG508A ADG509A			11		11		pFtyp	* EN - 0.0 *
Q _{INI} , Charge Injection	4		4		4		pr typ pC typ	$R_s = 0\Omega, V_s = 0V;$ Test Circuit 9
POWER SUPPLY							<u> </u>	
IDD	0.6		0.6		0.6		mA typ	$V_{IN} = V_{INL}$ or V_{INH}
~~		1.5	1	1.5		1.5	mA max	
Power Dissipation	10		10		10		mW typ	
		25		25		25	mWmax	

NOTE ¹Sample tested at 25°C to ensure compliance.

Specifications subject to change without notice.

TERMINOLOGY

R _{ON}	Ohmic resistance between terminals D and S	
R _{ON} Match	Difference between the R _{ON} of any two channels	
R _{ON} Drift	Change in R _{ON} versus temperature	
I _S (OFF)	Source terminal leakage current when the switch	toi
	is off	
I _D (OFF)	Drain terminal leakage current when the switch	
	is off	V
$I_{D}(ON)$	Leakage current that flows from the closed switch	V
	into the body	IIN
$V_{S}(V_{D})$	Analog voltage on terminal S or D	V
C _S (OFF)	Channel input capacitance for "OFF" condition	Vs
C _D (OFF)	Channel output capacitance for "OFF"	I_{D}
	condition	Iss

Digital input capacitance

VIN	Digital input capacitance
t_{OFF} (EN)	Delay time between the 50% and 10% points of
	the digital input and switch "OFF" condition
t _{TRANSITION}	Delay time between the 50% and 90% points of
	the digital inputs and switch "ON" condition
	when switching from one address state to
	another
t _{OPEN}	"OFF" time measured between 50% points of
	both switches when switching from one address
	state to another
VINL	Maximum input voltage for Logic "0"
V _{INH}	Minimum input voltage for Logic "1"
$I_{INL} (I_{INH})$	Input current of the digital input
V _{DD}	Most positive voltage supply
Vss	Most negative voltage supply
I _{DD}	Positive supply current
I _{SS}	Negative supply current

 C_{IN}

ADG508A/ADG509A

ABSOLUTE MAXIMUM RATINGS*

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
$\begin{array}{c} V_{DD} \text{ to } V_{SS} & \dots & $
Voltage at S, D $V_{SS} - 2V$ to $V_{DD} + 2V$ or
20mA, Whichever Occurs First
Continuous Current, S or D
Ims Duration, 10% Duty Cycle 40mA Digital Inputs ¹
Voltage at A, EN \ldots Voltage at A, EN \ldots Voltage at A, EN \ldots
$V_{\rm DD} + 4V \text{or}$
20mA, Whichever Occurs First
Power Dissipation (Any Package)
Up to $+75^{\circ}$ C
Derates above $+75^{\circ}$ C by
Operating Temperature
Commercial (K Version) $\ldots \ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
Industrial (B Version) $\ldots \ldots \ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
Extended (T Version)
Storage Temperature Range65°C to +150°C
NOTE ¹ Overvoltage at A, EN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

A2	A1	A0	EN	ON SWITCH
x	x	x	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

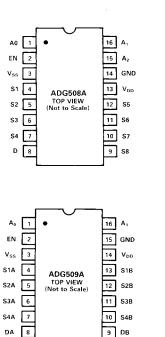
ADG508A

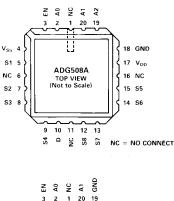
A1	A0	EN	ON SWITCH PAIR
х	х	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

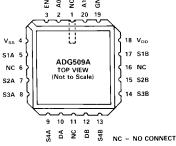
X = Don't Care ADG509A

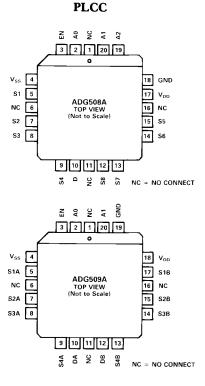
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

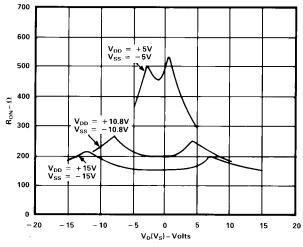

ESD (electrostatic discharge) sensitive device. The digital control inputs are Zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

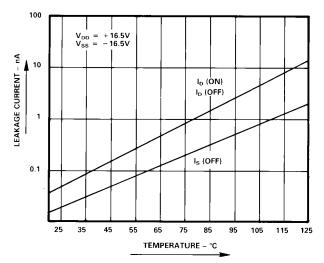




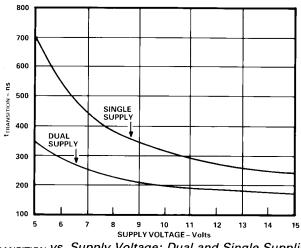

PIN CONFIGURATIONS

LCCC

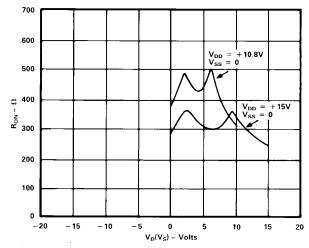




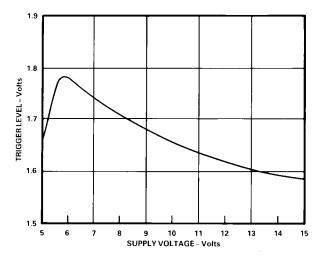
Typical Performance Characteristics — ADG508A/ADG509A


The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5V.

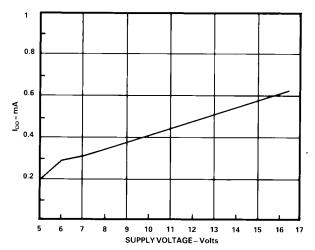
 R_{ON} as a Function of $V_D(V_S)$: Dual Supply Voltage, $T_A = +25^{\circ}C$



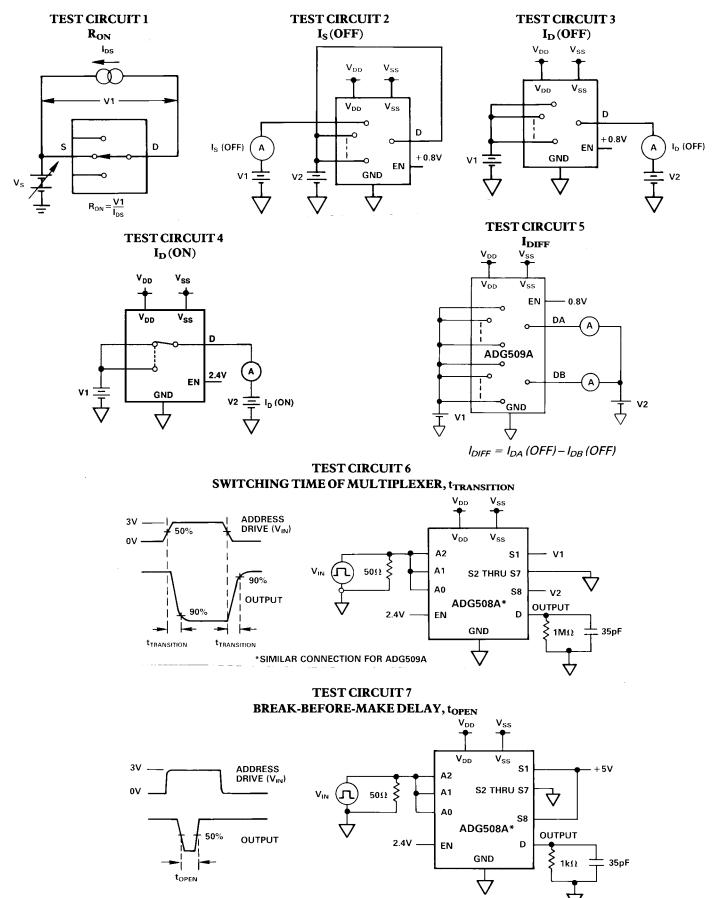
Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)



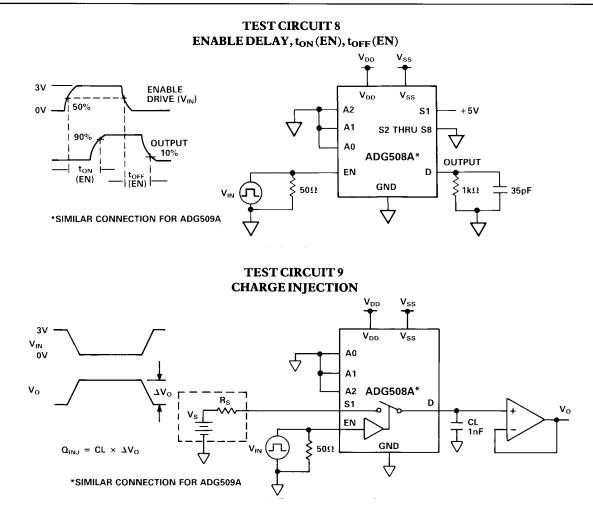
 $t_{TRANSITION}$ vs. Supply Voltage: Dual and Single Supplies, $T_{A}=+25^{\circ}C$


(Note: For V_{DD} and $|V_{SS}| < 10V$; $V1 = V_{DD}/V_{SS}$, $V2 = V_{SS}/V_{DD}$. See Test Circuit 6)

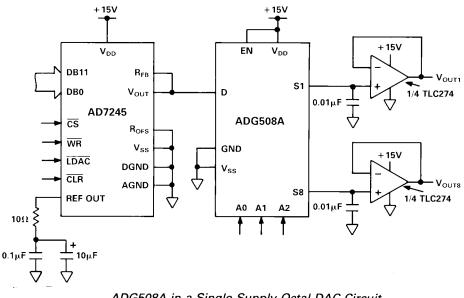
 R_{ON} as a Function of $V_D(V_S)$: Single Supply Voltage, $T_A = +25^{\circ}C$


Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_A = +25^{\circ}C$

 I_{DD} vs. Supply Voltage: Dual or Single Supply, $T_A = +25^{\circ}C$


ADG508A/ADG509A — Test Circuits

Note: All Digital Input Signal Rise and Fall Times Measured from 10% to 90% of 3V. $t_R = t_F = 20ns$.


*SIMILAR CONNECTION FOR ADG509A

ADG508A/ADG509A

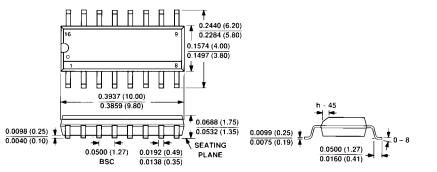
SINGLE SUPPLY OCTAL DAC APPLICATION

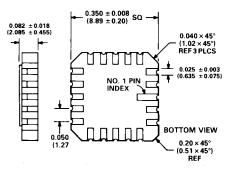
The following circuit shows the ADG508A connected as a demultiplexer to provide eight separate digitally programmable voltages (0 to + 10V) from the AD7245. The AD7245 is a complete 12-bit, voltage output DAC with output amplifier and Zener voltage reference on a monolithic CMOS chip. The entire system operates from a single +15V power supply. The ADG508A is ideally suited for the application because it has both low charge injection and I_S (OFF) leakage current.

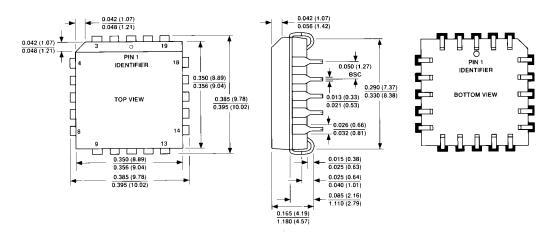
ADG508A in a Single-Supply Octal DAC Circuit

MECHANICAL INFORMATION

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).


16-Pin Plastic (N-16)


16-Pin Cerdip (Q-16)



20-Terminal Leadless Ceramic Chip Carrier (E-20A)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

